Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L
Answer:
The reaction is favorable at all temperatures
Explanation:
Since G = H - TS, -H and +S would result in G = -H -TS, which will always be negative.
Answer:
The transfer was essential to understand the mutation and the possibility of new, more resistant strains in microorganisms.
Explanation:
the transfer of microorganisms is based on the transfer of genetic data through conductive pathways that penetrate the membranes, called pili or genetic bridges.
These mutated genes with higher resistance are transmitted and resistance is generated in entire populations and even species.