1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
2 years ago
12

What is the mass (in ng) of 1.23 moles of nickel?

Chemistry
1 answer:
Ludmilka [50]2 years ago
3 0

Answer:

7.22 x 10¹⁰ ng Ni

Explanation:

To find the mass of nickel, you need to (1) convert moles to grams (via atomic mass from the periodic table) and then (2) convert grams to nanograms. These ratios need to be multiplied by each other, starting with the given value. It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the given value (1.23).

Atomic Mass (Ni): 58.693 g/mol

1 gram = 1 x 10⁹ nanograms

1.23 moles Ni             58.693 g               1 x 10⁹ ng
----------------------  x  ----------------------  x  ---------------------  =  7.22 x 10¹⁰ ng Ni
                                     1 mole                       1 g

You might be interested in
For a particular redox reaction, Cr is oxidized to CrO 2 − 4 and Ag + is reduced to Ag . Complete and balance the equation for t
Sunny_sXe [5.5K]

Answer:

6Ag⁺ + Cr + 8OH⁻ → 6Ag + CrO₄²⁻ + 4H₂O

Explanation:

We can balance the redox reaction of Cr and Ag⁺, in terms of two half-reactions, one for Ag⁺ and other for Cr:

Ag⁺   →   Ag      

In the above equation we need to balance the number of electrons, we know that the Ag⁺ is being reduced to Ag, so the reaction is:

Ag⁺ + e⁻ →  Ag   (1)

Now, we need to balance the half-reaction of Cr:

Cr   →  CrO₄²⁻  

From above, we know that the Cr is being oxidated to CrO₄²⁻, so we need to balance the number of electrons and the number of oxygen atoms. The Cr⁰ is being oxidated to Cr⁶⁺, so for the electron balance, we need to add 6e⁻ to the right side of the equation. Since the reaction is in a basic medium, the oxygen atoms will be balanced with OH⁻ ions as follows:          

Cr + OH⁻ →  CrO₄²⁻ + 6e⁻  

The hydrogen atoms will be balanced using H₂O molecules:  

Cr + OH⁻ →  CrO₄²⁻ + 6e⁻ + H₂O    

The balanced equation is:

Cr + 8OH⁻ →  CrO₄²⁻ + 6e⁻ + 4H₂O   (2)

Since the reaction (1) involves 1 electron and the reaction (2) involves 6 electrons, by increasing the reaction (1) six times and by the addition of the two reactions (1 and 2) we can have the net redox reaction:

6*(Ag⁺ + e⁻ →  Ag)  

<u>Cr + 8OH⁻ →  CrO₄²⁻ + 6e⁻ + 4H₂O</u>

6Ag⁺ + Cr + 8OH⁻ → 6Ag + CrO₄²⁻ + 4H₂O                  

Therefore, the net equation is: 6Ag⁺ + Cr + 8OH⁻ → 6Ag + CrO₄²⁻ + 4H₂O.

I hope it helps you!

7 0
3 years ago
How many grams are in 6.53 moles of Pb
dezoksy [38]
Mr: 207.2
m=n×Mr= 6.53×207.2= 1353.02g
7 0
3 years ago
Besides being slow to reproduce, what else could make a population susceptible to being endangered?
olga_2 [115]

Answer:

Not being able to adapt to their surroundings

Explanation:

For example, a population living in a cold climate and wears little to no clothes will give them frost bite. And so the nature of needing to adapt is core to survival.

6 0
3 years ago
Read 2 more answers
For the following reaction, 6.94 grams of water are mixed with excess sulfur dioxide . Assume that the percent yield of sulfurou
Alexxx [7]
<h3>Answer:</h3>

#a. Theoretical yield = 31.6 g

#b. Actual yield = 25.72 g

<h3>Explanation:</h3>

The equation for the reaction between sulfur dioxide and water to form sulfurous acid is given by the equation;

SO₂(g) + H₂O(l) → H₂SO₃(aq)

The percent yield of H₂SO₃ is 81.4%

Mass of water that reacted is 6.94 g

#a. To get the theoretical yield of H₂SO₃ we need to follow the following steps

Step 1: Calculate the moles of water

Molar mass of water = 18.02 g/mol

Mass of water = 6.94 g

But, moles = Mass/molar mass

Moles of water = 6.94 g ÷ 18.02 g/mol

                        = 0.385 mol

Step 2: Calculate moles of H₂SO₃

From the equation, the mole ratio of water to H₂SO₃ is 1 : 1

Therefore, moles of water = moles of H₂SO₃

Hence, moles of H₂SO₃ = 0.385 mol

Step 3: Theoretical mass of H₂SO₃

Mass = moles × Molar mass

Molar mass of H₂SO₃ = 82.08 g/mol

Number of moles of H₂SO₃ = 0.385 mol

Therefore;

Theoretical mass of H₂SO₃ = 0.385 mol ×  82.08 g/mol

                                             = 31.60 g

Thus, the theoretical yield of H₂SO₃ is 31.6 g

<h3>#b. Calculating the actual yield</h3>

We need to calculate the actual yield

Percent yield of H₂SO₃ is 81.4%

Theoretical yield is 31.60 g

But; Percent yield = (Actual yield/theoretical yield)×100

Therefore;

Actual yield = Percent yield × theoretical yield)÷ 100

                   = (81.4 % × 31.6) ÷ 100

                  = 25.72 g

The percent yield of H₂SO₃ is 25.72 g

6 0
3 years ago
An electric range burner weighing 699.0 grams is turned off after reaching a temperature of 482.0°C, and is allowed to cool down
jasenka [17]

Answer:

0.42 J/gºC

Explanation:

We'll begin by calculating the heat energy used to heat up the water. This can be obtained as follow:

Mass (M) of water = 560 g

Initial temperature (T₁) = 22.7 °C

Final temperature (T₂) = 80.3 °C.

Specific heat capacity (C) of water = 4.18 J/gºC

Heat (Q) absorbed =?

Q = MC(T₂ – T₁)

Q = 560 × 4.18 (80.3 – 22.7)

Q = 2340.8 × 57.6

Q = 134830.08 J

Finally, we shall determine the specific heat capacity of the burner. This can be obtained as follow:

Mass (M) of burner = 699 g

Initial temperature (T₁) = 482.0°C

Final temperature (T₂) = 22.7 °C

Heat (Q) evolved = – 134830.08 J

Specific heat capacity (C) of the burner =?

Q = MC(T₂ – T₁)

–134830.08 = 699 × C (22.7 – 482.0)

–134830.08 = 699 × C × –459.3

–134830.08 = –321050.7 × C

Divide both side by –321050.7

C = –134830.08 / –321050.7

C = 0.42 J/gºC

Therefore, the specific heat capacity of the burner is 0.42 J/gºC

8 0
3 years ago
Other questions:
  • A student wants to prepare 250.0 mL of 0.10 M NaCl solution. Which procedure is most appropriate? (formula Molar Mass of NaCl =
    10·1 answer
  • Classify these compounds as ionic or molecular. ncl3 nabr
    8·1 answer
  • Paper chromatography is a technique used to separate molecules based upon their size and solubility in a particular solvent. If
    5·1 answer
  • HCl +KOH ---&gt; KCl + H20
    11·1 answer
  • Which family on the periodic table is least likely to enter into chemical reactions? 1 2 17 18
    10·2 answers
  • How many molecules are in 7.5 mol of h2o
    7·1 answer
  • To eight significant figures, avogadro's constant is 6.0221367×1023mol−1. which of the following choices demonstrates correct ro
    15·2 answers
  • Daniel observed and compared some stars at night and recorded his observations in a chart.
    12·2 answers
  • Put 30,000,000,000 into scientific notation
    5·2 answers
  • 3) What are the three types of sedimentary rocks?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!