Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
When sodium carbonate is dissolved in water, the equation is
.
When carbon dioxide is placed in water, aqueous carbon dioxide is formed: 
<h3>Dissolution of compounds in water</h3>
Some compounds are water-soluble, some are just partially soluble, while others are insoluble in water. Some soluble or partially soluble substances dissociate in water into their component ions. These substances are said to be ionic.
Sodium carbonate, like every other sodium salt, is soluble in water. It dissolves in water to form an aqueous solution of sodium carbonate.
While in solution, sodium carbonate dissociates into its component ions according to the following equation:

Carbon dioxide, on the other hand, does not dissociate in water. Instead, it dissolves in water where most of it remains as aqueous carbon dioxide in equilibrium with a small amount of hydronium ion and hydrogen carbonate ion.
Since the hydronium and hydrogen carbonate ions formed are so minute, the equation of the reaction can be written as: 
More on the dissolution of substances can be found here: brainly.com/question/28580758
#SPJ1
Answer:
In chemistry and quantum mechanics, an orbital is a mathematical function that describes the wave-like behavior of an electron, electron pair, or (less commonly) nucleons. An orbital can contain two electrons with paired spins and is often associated with a specific region of an atom.
Explanation:
Answer:
c. Kay's rule
Explanation:
Kay's rule -
The rule is used to determine the pseudo reduced critical parameters of mixture , with the help of using the critical properties of the components of a given mixture .
The equation for Kay's rule is as follows ,
PV = Z RT
Where Z = The compressibility factor of the mixture .
Hence from the given options , the correct answer is Kay's rule .