Theres: the vacuole, nucleus, rough endoplamid reticulum, smooth endoplasmic reticulum, cell memebrane, cell wall, chloroplast, mitochondria, golgi apperatus, lysosomes, and ribosomes
The final velocity of the red barge in the collision elastic is 0.311 m/s when it collides with blue barge pf mass 1000000 kg.
Final velocity(v3) of the red barge is calculated by following formula
m1×v1+ m2×v2= (m1+m2)v3
Substituting the value of m1= 150000 kg, v1= 0.25 m/s, m2= 1000000 kg, v2= 0.32 m/s
150000 × 0.25+ 1000000×0.32= (150000+1000000)×v3
37500+ 320000= 1150000×v3
357500= 1150000×v3
v3= 0.311 m/s
<h3>What is elastic collision velocity? </h3>
- The velocity of the target particle after a head-on elastic impact in which the projectile is significantly more massive than the target will be roughly double that of the projectile, but the projectile velocity will remain virtually unaltered.
For more information on elastic collision velocity kindly visit to
brainly.com/question/29051562
#SPJ9
<span>According to its definition, friction is generated when atoms interfere with each other on sliding surfaces.</span>
Force exerted by Justin=300 N
Here power= 600 W
distance traveled=10 m
time=5 s
power is given by P= Work done/ time
600=work/5
so work= 60x5=3000J
now work done= force* distance
3000=F *10
F= 3000/10
F=300 N
Answer:
Work is done in moving a charge of 2 coulomb across two points having a potential difference of 12 volt is 24 joule .
Explanation: