The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Answer:
4.61 seconds
Explanation:
Given data
Initial velocity= 12m/s
acceleration= -2.6m/s^2
From the given data
we can find the time t
we know that
Acceleration= velocity/time
time= velocity/acceleration
time= 12/2.6
time= 4.61 seconds
Answer: C) Increase the amplitude of the wavelenghth to increase the intensity.
Explanation:
Answer:True
Explanation:
Albedo is a unit-less, non-dimensional quantity that shows how well a surface reflects solar energy. The value of albedo can vary from 0 to 1, 0 being the black and 1 refers to a white surface. Zero means Surface is a perfect absorber i.e. it absorbs all the incoming rays incidents on it. Albedo 1 means the surface is a perfect reflector.
Albedo usually applies for visible light, even though it may involve some of the infrared regions of the electromagnetic spectrum. The average albedo associated with earth surface is 30%