Assuming that the students
worldwide are being considered, because of the extremely large population, this
can be considered as a binomial distribution. A normal distribution is used most
usually as a fair approximation of the binomial. The mean is the expectation,
therefore:<span>
E[x] = np = (16)(0.22) = 3.52
<span>μ = 3.52 </span></span>
The energy carried by the incident light is

where h is the Planck constant and f is the frequency of the light. The threshold frequency is the frequency that corresponds to the minimum energy needed to eject the electrons from the metal, so if we substitute the threshold frequency in the formula, we get the minimum energy the light must have to eject the electrons:
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
Answer:
Explanation:
1 ha = 10⁴ m²
1375 ha = 1375 x 10⁴ m² = 13.75 x 10⁶ m²
In flow in a month = .5 x 10⁶ x 30 m³ = 15 x 10⁶ m³
Net inflow after all loss = 18.5 - 9.5 - 2.5 cm = 6.5 cm = .065 m
Net inflow in volume = 13.75 x 10⁶ x .065 m³= .89375 x 10⁶ m³
Let Q be the withdrawal in m³
Q - 15 x 10⁶ - .89375 x 10⁶ = 13.75 x 10⁶ x .75 = 10.3125 x 10⁶
Q = 26.20 x 10⁶ m³
rate of withdrawal per second
= 26.20 x 10⁶ / 30 x 24 x 60 x 60
= 26.20 x 10⁶ / 2.592 x 10⁶
= 10.11 m³ / s
Answer: A chemical equation describes a chemical reaction. Reactants are starting materials and are written on the left-hand side of the equation. Products are the end-result of the reaction and are written on the right-hand side of the equation.
Explanation: