Answer:
Explanation:
Terry can ride at a speed of
V = 30 miles in 2hours
Speed = distance / time
V = 30 /2
V = 15 mile/hour
So, we want to know the distance traveled in 1.7hours
Then,
Speed = distane / time
Distance = speed × time
Distance =15 × 1.7
Distance = 25.5 miles
So, the distance traveled in 1.7hours is 25.5 miles
Momentum should be conserved. The momentum of both
objects must balance with their initial and final momentum.
Let m1 and v1 be the mass and velocity of the
bowling ball
And m2 and v2 be the mass and velocity of the
bowling pin
(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f
30 kg m/s + (1.5 kg)(0 m/s) = 13kg m/s + 1.5v2f
V2f = 11.33 m/s
<span>So the momentum = 1.5 kg(11.33 m/s) = 17 kg m/s</span>
Answer:
it is very hard question for me sorry i cant solve it
I can't make sense of this question. Julie's throwing the ball, so it's leaving her rather than arriving at her ???
To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C