Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M
<h3>
Answer:</h3>
0.6 g NaCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] Na₂CO₃ (aq) + CaCl₂ (aq) → CaCO₃ (s) + 2NaCl (aq)
[Given] 0.5 g Na₂CO₃ reacted with excess CaCl₂
<u>Step 2: Identify Conversions</u>
[RxN] Na₂CO₃ → 2NaCl
Molar Mass of Na - 22.99 g/mol
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of Na₂CO₃ - 2(22.99) + 12.01 + 3(16.00) = 105.99 g/mol
Molar Mass of NaCl - 22.99 + 35.45 = 58.44 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
0.551373 g NaCl ≈ 0.6 g NaCl
They're only found in the nucleus and play an important role in keeping the atom stable because they carry a negative charge to counteract the proton's positive charge.