Physical isn't so chemical
Answer:
979 atm
Explanation:
To calculate the osmotic pressure, you need to use the following equation:
π = <em>i </em>MRT
In this equation,
-----> π = osmotic pressure (atm)
-----><em> i</em> = van't Hoff's factor (number of dissolved ions)
-----> M = Molarity (M)
-----> R = Ideal Gas constant (0.08206 L*atm/mol*K)
-----> T = temperature (K)
When LiCl dissolves, it dissociates into two ions (Li⁺ and Cl⁻). Therefore, van't Hoff's factor is 2. Before plugging the given values into the equation, you need to convert Celsius to Kelvin.
<em>i </em>= 2 R = 0.08206 L*atm/mol*K
M = 20 M T = 25°C + 273.15 = 298.15 K
π = <em>i </em>MRT
π = (2)(20 M)(0.08206 L*atm/mol*K)(298.15 K)
π = 979 atm
Answer:
Explanation:
(NH4)3 PO4 +NaOH arrow Na3PO4 +3NH3 +3H2O
Start by seeing what happens with the Na. You need 3 on the left, so put a 3 in front of NaOH
(NH4)3 PO4 +3NaOH arrow Na3PO4 +3NH3 +3H2O Next work with the nitrogens. YOu have 3 on the left and 3 on the right, so they are OK. Next Go to the stray oxygens.
You have 3 on left in (NaOH) and three on the right in 3H2O so they are fine as well. The last thing you should look at are hydrogens.
There are 12 + 3 on the left which is 15. There are 9 (in 3NH3) and 6 more in the water. They seem fine.
Why didn't I do something with the PO4^(-3)? The reason is a deliberately stayed away from them and balanced everything else. Since they were untouched with 1 on the left and 1 on the right, they are balanced.
Species Na H O N PO4
Left 3 15 3 3 1
Right 3 15 3 3 1
The reaction will produce solid copper and aluminium chloride salt.
Explanation:
Copper chloride (CuCl₂) in solution will react with aluminium to form solid cooper and aluminium chloride (AlCl₃).
3 CuCl₂ (aq) + 2 Al (s) → 3 Cu (s) + 2 AlCl₃ (aq)
Learn more about:
numerical problems with copper chloride and aluminium
brainly.com/question/8827783
#learnwithBrainly
Puberty is what is correct I believe