<span>35.0 mL of 0.210 M
KOH
molarity = moles/volume
find moles of OH
do the same thing for: 50.0 mL of 0.210 M HClO(aq) but for H+
they will cancel out: H+ + OH- -> H2O
but you'll have some left over,
pH=-log[H+]
pOH
=-log[OH-]
pH+pOH
=14</span>
The mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
The given parameters:
- <em>Density of the octane, ρ = 0.703 g/ml</em>
- <em>Volume of octane, v = 3.79 liters</em>
<em />
The mass of the octane burnt is calculated as follows;

The combustion reaction of octane is given as;

From the reaction above:
228.46 g of octane -------------------> 704 g of CO₂ gas
2,664.37 of octane --------------------> ? of CO₂ gas

Thus, the mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
Learn more about combustion of organic compounds here: brainly.com/question/13272422
I think it would be Kriptonite
Answer:
C) Highly reactive
Explanation:
An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion
<h3>Answer:</h3>
3.7 Moles of Nitrogen
<h3>
Explanation:</h3>
On observing the chemical formula C₈H₁₁NO₂ (might be formula of Dopamine) it is found that one mole of this compound contains;
8 Moles of Carbon
11 Moles of hydrogen
1 Mole of Nitrogen and
2 Moles of Oxygen respectively.
<u>Calculate Number of Moles of Nitrogen:</u>
As,
1 Mole of C₈H₁₁NO₂ contains = 1 Mole of Nitrogen
So,
3.7 Moles of C₈H₁₁NO₂ will contain = X Moles of Nitrogen
Solving for X,
X = (3.7 Moles × 1 Mole) ÷ 1 Mole
X = 3.7 Moles of Nitrogen