What helps me to balance equations is to list the elements i have on each side of the equation, and use tally marks to see what I have and don't have. Then when I'm done balancing, I tally again to make sure everything matches up.
On the left side, you have 1 Al, and 2 O. On the right side, 1 Al and 3 O.
In order for the equation to balance, you need to place a 2 in front of the AlO on the right side. This would make the Al have 2 atoms and the O have six. On the left side, you need to place a 2 in front of the Al and a 3 in front of the O, making it six. Left side: 2 Al's 6 O's. Right side: 2 Al's and 6 O's. Matches!
<span>17.5 g
35 ppt stands for 35 parts per thousand. So let's convert that to a decimal number by taking 35 and dividing by 1000.
35/1000 = 0.035
Now multiply that number by the number of grams of seawater you have. So
0.035 * 500 g = 17.5 g
So you have 17.5 grams of salt when you have 500 grams of seawater.</span>
Answer:
A Cellulose not digested by humans.
b. the storage form of carbohydrates in plants is starch
C amylose contains 1-4 glycosidic bond
D Glycogen and starch are highly branched polysaccharides.
Explanation:
Assuming that nitrogen gas is ideal, we can use the equation PV = nRT to relate first conditions to the second condition. At constant temperature, pressure and volume are indirectly related as follows:
P = k / V
k is equal nRT
P1V1 = P2V2
P2 = 101.325 ( 4.65 ) / .480 = 981.586 kPa
Answer:
A variable shape that adapts to fit its container.