Answer:
c) Fullerene and carbon nanotubes because they have empty spaces inside the molecules
Explanation:
Fullerene and carbon nanotubes would be the most desired in order to hold the cancer fighting drugs and to carry them through the body safely.
- These molecules have empty spaces in them.
- The cavities makes it possible for storage.
- As they pass through the body, they can be held perfectly well to their target site of action.
Answer:
It decreases
Explanation:
As one moves from left to right on the periodic table, the radius of atoms reduces due to the nuclear pull.
- The size of an atom estimated by the atomic radius is taken as half of the internuclear distance between the two covalently bonded atoms of non-metallic elements.
- Across a period, atomic radius decreases progressively from left to right.
- This is due to the increasing nuclear charge without attendant increase in the number of electronic shell.
Answer:
a. Sn or Si ⇒ Sn
b. Br or Ga ⇒ Ga
c. Sn or Bi ⇒ similar in size
d. Se or Sn ⇒ Sn
Explanation:
The larger atom has a larger atomic radius. We have to consider how varies the atomic radius for chemical elements in the Periodic Table. In a group (column), the atomic radius increases from top to bottom while in a period (file), it increases from right to left.
a. Sn or Si ⇒ Sn
They are in the <u>same group</u>. Sn is on the top, so it has a larger atomic radius.
b. Br or Ga ⇒ Ga
They are in the <u>same period</u>. Ga is located at the left so it has a larger atomic radius.
c. Sn or Bi ⇒ similar
They are not in the same group neither the same period. Bi is located more at the bottom, so it would be larger than Sn, but Bi is also at the right side, so it would be smaller than Bi. Thus, they have comparable sizes.
d. Se or Sn⇒ Sn
They are not in the same group neither the same period. Se is located at the top and right side compared to Sn, so Sn is the larger atom.
They have six valence electrons