F- due to the fact that it has one more electron.
Hope this helps and good luck :)
We know the law of conservation of mass
- It states that mass is neither formed nor destroyed in any chemical reaction.
- Mass of reactants=Mass of products.
Here
- Mg and I_2 are reactants
- MgI_2 is product with some yield.
- Mass of reactants=10+60.0=70.0g
- Mass of MgI_2=53.88g
- Mass of yield=Product-MgI_2=70-53.88=16.12g
Lets find the percentage



Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
Covalent bonds form when atoms share electrons. This sharing allows each atom to achieve its octet of electrons and greater stability. Methane, CH 4<span>, the simplest organic compound, contains covalent bonds. Carbon has four valence electrons, while hydrogen has one valence electron. By sharing these outer‐shell electrons, carbon and hydrogen complete their valence shells and become more stable. The duet of electrons on the hydrogen is isoelectronic with helium and forms a complete shell.</span>
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.