Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
Answer:
Based on these values and on consideration of molecular geometry, the H-Se bond can be considered almost _____non-polar___ and the molecule is __polar_____.
Explanation:
Looking at the difference in electro negativity of the two elements; hydrogen and selenium, one may be led to the conclusion that the molecule is nonpolar since the magnitude of electronegative between the two bonding atoms is minimal.
However, electro negativity difference alone is insufficient to determine the polarity of a molecule. The structure of the molecule is also considered. Based on the structure of the molecule, it is expected to have a dipole moment. Hence the molecule is polar.
Answer:
Fe + 3CuNO₃ → Fe(NO₃)₃ + 3Cu
Explanation:
- Copper (I) nitrate = CuNO₃ (Nitrate, NO₃⁻, always has a charge of -1).
- Iron (III) nitrate = Fe(NO₃)₃ (That way the compound has an overall neutral charge)
Writing the equation using symbols leaves us with:
- Fe + CuNO₃ → Fe(NO₃)₃ + Cu
<em>It is not balanced yet</em>. Now we <u>balance the NO₃ species on the left side</u>:
- Fe + 3CuNO₃ → Fe(NO₃)₃ + Cu
Finally we<u> balance the Cu species on the right side</u>:
- Fe + 3CuNO₃ → Fe(NO₃)₃ + 3Cu
Answer:
denotes the molar hydrogen ion concentration
Explanation:
Answer:
Percent yield of PI3 = 95.4%
Explanation:
This is the reaction:
2P (s) + 3I2 (g) > 2PI3 (g)
Let's determine the moles of iodine that has reacted.
58.6 g / 253.8 g/mol = 0.231 mol
Ratio is 3:2. Let's make a rule of three to state the moles produced at 100 % yield reaction.
3 moles of I2 react to make 2 moles of PI3
0.231 moles of I2 would make (0.231 .2) / 3 = 0.154 moles of PI3
As we have produced 0.147 moles let's determine the percent yield.
(Yield produced / Theoretical yield) . 100 > (0.147 / 0.154) . 100 = 95.4%