The answer is B. The less mass then the less the gravity pulls on it
Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
Answer:
Explanation: A square of dry ice has a surface temperature of - 109.3 degrees Fahrenheit (- 78.5 degrees C). Dry ice additionally has the extremely decent component of sublimation - as it separates, it transforms legitimately into carbon dioxide gas as opposed to a fluid.
Answer:
Mole fraction of C₄H₄S = 0.55
Explanation:
Mole fraction is moles of solute / Total moles
Total moles are the sum of moles of solute + moles of solvent.
Let's find out the moles of our solute and our solvent.
Mass of solute: 55g
Mass of solvent: 65g
Mol = Mass / molar mass
55 g / 84.06 g/mol = 0.654 moles of C₄H₄S
65 g /123 g/mol = 0.529 moles of C₂H₃BrO
Total moles = 0.654 + 0.529 = 1.183 moles
Mole fraction of thiophene = Moles of tiophene / Total moles
0.654 / 1.183 = 0.55