(3 cos x-4 sin x)+(3sin x+4 cos x)=5
(3cos x+4cos x)+(-4sin x+3 sin x)=5
7 cos x-sin x=5
7cos x=5+sin x
(7 cos x)²=(5+sinx)²
49 cos²x=25+10 sinx+sin²x
49(1-sin²x)=25+10 sinx+sin²x
49-49sin²x=25+10sinx+sin²x
50 sin² x+10sinx-24=0
Sin x=[-10⁺₋√(100+4800)]/100=(-10⁺₋70)/100
We have two possible solutions:
sinx =(-10-70)/100=-0.8
x=sin⁻¹ (-0.8)=-53.13º (360º-53.13º=306.87)
sinx=(-10+70)/100=0.6
x=sin⁻¹ 0.6=36.87º
The solutions when 0≤x≤360º are: 36.87º and 306.87º.
X+3=61
x=61-3=58
58+37=95
180-95=85
so x=58 and y=85
<h3>
Answer: angle T = angle W</h3>
Explanation:
We are given the sides are congruent due to the tickmarks. Specifically
TU = WV (single tickmarks)
TV = WX (double tickmarks)
So we just need the "A" of "SAS". The A is between the two S letters, so the angle is between the two sides. For triangle TUV, the angle T is between the two sides with the tickmarks. Similarly, angle W is between the tickmarked sides of triangle WVX.
If we know that angle T = angle W, then we have enough information to use SAS.
Answer:
4x^2+6x+2
Step-by-step explanation:
Answer:
-12 < p
Step-by-step explanation:
28 > 4 – 2p
Subtract 4 from each side
28-4 > 4-4 – 2p
24 > -2p
Divide each side by -2, remembering to flip the inequality
24/-2 < -2p/-2
-12 < p