Answer:
The approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
Step-by-step explanation:
The equation of the parabola is:
![y=0.00035x^{2}](https://tex.z-dn.net/?f=y%3D0.00035x%5E%7B2%7D)
Compute the first order derivative of <em>y</em> as follows:
![y=0.00035x^{2}](https://tex.z-dn.net/?f=y%3D0.00035x%5E%7B2%7D)
![\frac{\text{d}y}{\text{dx}}=\frac{\text{d}}{\text{dx}}[0.00035x^{2}]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7Bd%7Dy%7D%7B%5Ctext%7Bdx%7D%7D%3D%5Cfrac%7B%5Ctext%7Bd%7D%7D%7B%5Ctext%7Bdx%7D%7D%5B0.00035x%5E%7B2%7D%5D)
![=2\cdot 0.00035x\\\\=0.0007x](https://tex.z-dn.net/?f=%3D2%5Ccdot%200.00035x%5C%5C%5C%5C%3D0.0007x)
Now, it is provided that |<em>x </em>| ≤ 605.
⇒ -605 ≤ <em>x</em> ≤ 605
Compute the arc length as follows:
![\text{Arc Length}=\int\limits^{x}_{-x} {1+(\frac{\text{dy}}{\text{dx}})^{2}} \, dx](https://tex.z-dn.net/?f=%5Ctext%7BArc%20Length%7D%3D%5Cint%5Climits%5E%7Bx%7D_%7B-x%7D%20%7B1%2B%28%5Cfrac%7B%5Ctext%7Bdy%7D%7D%7B%5Ctext%7Bdx%7D%7D%29%5E%7B2%7D%7D%20%5C%2C%20dx)
![=\int\limits^{605}_{-605} {\sqrt{1+(0.0007x)^{2}}} \, dx \\\\={\displaystyle\int\limits^{605}_{-605}}\sqrt{\dfrac{49x^2}{100000000}+1}\,\mathrm{d}x\\\\={\dfrac{1}{10000}}}{\displaystyle\int\limits^{605}_{-605}}\sqrt{49x^2+100000000}\,\mathrm{d}x\\\\](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B605%7D_%7B-605%7D%20%7B%5Csqrt%7B1%2B%280.0007x%29%5E%7B2%7D%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%7B%5Cdisplaystyle%5Cint%5Climits%5E%7B605%7D_%7B-605%7D%7D%5Csqrt%7B%5Cdfrac%7B49x%5E2%7D%7B100000000%7D%2B1%7D%5C%2C%5Cmathrm%7Bd%7Dx%5C%5C%5C%5C%3D%7B%5Cdfrac%7B1%7D%7B10000%7D%7D%7D%7B%5Cdisplaystyle%5Cint%5Climits%5E%7B605%7D_%7B-605%7D%7D%5Csqrt%7B49x%5E2%2B100000000%7D%5C%2C%5Cmathrm%7Bd%7Dx%5C%5C%5C%5C)
Now, let
![x=\dfrac{10000\tan\left(u\right)}{7}\\\\\Rightarrow u=\arctan\left(\dfrac{7x}{10000}\right)\\\\\Rightarrow \mathrm{d}x=\dfrac{10000\sec^2\left(u\right)}{7}\,\mathrm{d}u](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B10000%5Ctan%5Cleft%28u%5Cright%29%7D%7B7%7D%5C%5C%5C%5C%5CRightarrow%20u%3D%5Carctan%5Cleft%28%5Cdfrac%7B7x%7D%7B10000%7D%5Cright%29%5C%5C%5C%5C%5CRightarrow%20%5Cmathrm%7Bd%7Dx%3D%5Cdfrac%7B10000%5Csec%5E2%5Cleft%28u%5Cright%29%7D%7B7%7D%5C%2C%5Cmathrm%7Bd%7Du)
![\int dx={\displaystyle\int\limits}\dfrac{10000\sec^2\left(u\right)\sqrt{100000000\tan^2\left(u\right)+100000000}}{7}\,\mathrm{d}u](https://tex.z-dn.net/?f=%5Cint%20dx%3D%7B%5Cdisplaystyle%5Cint%5Climits%7D%5Cdfrac%7B10000%5Csec%5E2%5Cleft%28u%5Cright%29%5Csqrt%7B100000000%5Ctan%5E2%5Cleft%28u%5Cright%29%2B100000000%7D%7D%7B7%7D%5C%2C%5Cmathrm%7Bd%7Du)
![={\dfrac{100000000}{7}}}{\displaystyle\int}\sec^3\left(u\right)\,\mathrm{d}u\\\\=\dfrac{50000000\ln\left(\tan\left(u\right)+\sec\left(u\right)\right)}{7}+\dfrac{50000000\sec\left(u\right)\tan\left(u\right)}{7}\\\\=\dfrac{50000000\ln\left(\sqrt{\frac{49x^2}{100000000}+1}+\frac{7x}{10000}\right)}{7}+5000x\sqrt{\dfrac{49x^2}{100000000}+1}](https://tex.z-dn.net/?f=%3D%7B%5Cdfrac%7B100000000%7D%7B7%7D%7D%7D%7B%5Cdisplaystyle%5Cint%7D%5Csec%5E3%5Cleft%28u%5Cright%29%5C%2C%5Cmathrm%7Bd%7Du%5C%5C%5C%5C%3D%5Cdfrac%7B50000000%5Cln%5Cleft%28%5Ctan%5Cleft%28u%5Cright%29%2B%5Csec%5Cleft%28u%5Cright%29%5Cright%29%7D%7B7%7D%2B%5Cdfrac%7B50000000%5Csec%5Cleft%28u%5Cright%29%5Ctan%5Cleft%28u%5Cright%29%7D%7B7%7D%5C%5C%5C%5C%3D%5Cdfrac%7B50000000%5Cln%5Cleft%28%5Csqrt%7B%5Cfrac%7B49x%5E2%7D%7B100000000%7D%2B1%7D%2B%5Cfrac%7B7x%7D%7B10000%7D%5Cright%29%7D%7B7%7D%2B5000x%5Csqrt%7B%5Cdfrac%7B49x%5E2%7D%7B100000000%7D%2B1%7D)
Plug in the solved integrals in Arc Length and solve as follows:
![\text{Arc Length}=\dfrac{5000\ln\left(\sqrt{\frac{49x^2}{100000000}+1}+\frac{7x}{10000}\right)}{7}+\dfrac{x\sqrt{\frac{49x^2}{100000000}+1}}{2}|_{limits^{605}_{-605}}\\\\](https://tex.z-dn.net/?f=%5Ctext%7BArc%20Length%7D%3D%5Cdfrac%7B5000%5Cln%5Cleft%28%5Csqrt%7B%5Cfrac%7B49x%5E2%7D%7B100000000%7D%2B1%7D%2B%5Cfrac%7B7x%7D%7B10000%7D%5Cright%29%7D%7B7%7D%2B%5Cdfrac%7Bx%5Csqrt%7B%5Cfrac%7B49x%5E2%7D%7B100000000%7D%2B1%7D%7D%7B2%7D%7C_%7Blimits%5E%7B605%7D_%7B-605%7D%7D%5C%5C%5C%5C)
![=1245.253707795227\\\\\approx 1245.25](https://tex.z-dn.net/?f=%3D1245.253707795227%5C%5C%5C%5C%5Capprox%201245.25)
Thus, the approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
Answer:
None of them are irrational.
Step-by-step explanation:
An Irrational Number is a real number that cannot be written as a simple fraction.
Therefore:
-4 can be written as -4/1
2/9 is already in fraction
8.26 can be written as 826/100
11 can be written as 11/1
None of them are irrational.
However numbers like
are irrational as they can not be represented as fractions.
25 × 4 = 100 - the number of all candies
2/5 of 100 is
![\dfrac{2}{5}\cdot100=\dfrac{200}{5}=40](https://tex.z-dn.net/?f=%5Cdfrac%7B2%7D%7B5%7D%5Ccdot100%3D%5Cdfrac%7B200%7D%7B5%7D%3D40)
The third model is shaded to show the total number of caramel candies in 4 bags.
Answer:
3 seconds
Step-by-step explanation:
16 = 160 - 16t²
16t² = 144
t² = 9
t = 3
The correct answer is B.
6x*6x=36x
-8*+8=-64
Thus, our equation is 36x-64
Hope this helps!