Answer:
See below.
Step-by-step explanation:
ABC is an isosceles triangle with BA = BC.
That makes angles A and C congruent.
ABD is an isosceles triangle with AB = AD.
That makes angles ABD and ADB congruent.
Since m<ABD = 72 deg, then m<ADB = 72 deg.
Angles ADB and CDB are a linear pair which makes them supplementary.
m<ADB + m<BDC = 180 deg
72 deg + m<BDC = 180 deg
m<CDB = 108 deg
In triangle ABD, the sum of the measures of the angles is 180 deg.
m<A + m<ADB + m<ABD = 180 deg
m<A + 72 deg + 72 deg = 180 deg
m<A = 36 deg
m<C = 36 deg
In triangle BCD, the sum of the measures of the angles is 180 deg.
m<CBD + m<C + m<BDC = 180 deg
m<CBD + 36 deg + 108 deg = 180 deg
m<CBD = 36 deg
In triangle CBD, angles C and CBD measure 36 deg making them congruent.
Opposite sides DB and DC are congruent making triangle BCD isosceles.
Answer:
2×2×3×7
Step-by-step explanation:
84 is even, so divisible by 2. 84 = 2×42
42 is even, so divisible by 2. 82 = 2×2×21
21 has a sum of digits of 3, so is divisible by 3. 84 = 2×2×3×7
I'm going to assume that your function is f(x) = 1 + x^2 (NOT x2).
I suspect you're trying to estimate the "area under the curve of f(x) = 1 + x^2. You need to use this or a similar description to explain what you're doing.
Also, you need to specify whether you want "left end points" or "right end points" or "midpoints." Again I must assume you want one or the other (and will assume that you meant "left end points").
First, let's address the case n=3. You must graph f(x) = 1 + x^2 between -1 and +1. We will find the "lower sum," using "left end points." The 3 x-values are {-1, -1/3, 1/3}. Evaluate the function f(x) = 1 + x^2 at these 3 x-values. Keep in mind that the interval width is 2/3.
The function (y) values are {0, 2/3, 4/3}.
Sorry, Michael, but I must stop here and await clarification from you regarding what you've been told to do in this problem. Otherwise too much guessing (regarding what you meant) is necessary. Please review the original problem and ensure that you have copied it exactly as presented, and also please verify whether this problem does indeed involve estimating areas under curves between starting and ending x-values.