Water behaves as a base in this reaction.
The Bronsted-Lowry definition is applied, because the reaction involves the transfer of H+ from one reactant to the other.
A Bronsted-Lowry base is defined as a substance that accepts a proton.
Because water gains a proton to form H3O+ in this particular reaction, it acts as a base
Answer:
It would change the charge of the atom.
Explanation:
Added electrons cause atoms to be negatively charged, lost electrons cause atoms to be positively charged.
Answer:
But-2-ene is your answer i guess
Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L