N = 4 moles of Ar2, P = 1.90 atm, V = ?
T = 50C = 273 + 50K = 323K
PV = nRT --> V = nRT/P
V = (4)(.0821)(323)/1.90
V = 106.07/ 1.9
V = 55.8 L
D. dormancy is the correct answer
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L
C. Sn (tin) is a metal, Si (silicon) is a metalloid, and C (carbon) is a nonmetal