Answer:
A. Nonmetals have relatively high ionization energies.
Explanation:
Nonmetals have high ionization energies because they tend to gain electrons in order to fill their outer shell. Also, the electrons are closer to the nucleus and require more energy to remove them.
Hope that helps.
Answer:
3.58J/g°C is the specific heat of the metal
Explanation:
The specific heat of a material is defined as the energy that 1g of the material absorbs and produce the increasing in temperature in 1°C. The equation is:
Q = S*ΔT*m
<em>Where Q is energy = 1362J</em>
<em>S is specific heat of the material</em>
<em>ΔT is change in temperature = 42°C - 17°C = 25°C</em>
<em>And m is the mass of the material = 15.2g</em>
Replacing:
S = Q / ΔT*m
S = 1362J / 25°C*15.2g
<h3>3.58J/g°C is the specific heat of the metal</h3>
Answer:
The value of entropy change for the process 
Explanation:
Mass of the ideal gas = 0.0027 kilo mol
Initial volume
= 4 L
Final volume
= 6 L
Gas constant for this ideal gas ( R ) = 
Where
= Universal gas constant = 8.314 
⇒ Gas constant R = 8.314 × 0.0027 = 0.0224 
Entropy change at constant temperature is given by,

Put all the values in above formula we get,
![dS = 0.0224 log _{e} [\frac{6}{4}]](https://tex.z-dn.net/?f=dS%20%3D%200.0224%20%20log%20_%7Be%7D%20%5B%5Cfrac%7B6%7D%7B4%7D%5D)
This is the value of entropy change for the process.
Answer:
polar
Molecules that have ends with partial negative and positive charges are known as polar molecules. It is this polar property that allows water to separate polar solute molecules and explains why water can dissolve so many substances.
Explanation:
<em>Answer:</em>
<em>Chemical equations must be balanced to satisfy the law of conservation of matter, that states that matter cannot be produced or destroyed in a closed system. The law of conservation of mass governs the balancing of a chemical equation.</em>
Explanation: