51.448 g is the required answer!
The answer to this question is dropping it on a hard surface.
Answer:
16.33°C
Explanation:
Applying,
Heat lost by copper = heat gained by water
cm(t₁-t₃) = c'm'(t₃-t₂).............. Equation 1
Where c = specific heat capacity of copper, m = mass of copper, c' = specific heat capacity of water, m' = mass of water, t₁ = initial temperature of copper, t₂ = initial temperature of water, t₃ = final equilibrium temperature.
From the question,
Given: m = 50 kg, t₁ = 140°C, m' = 90 L = 90 kg, t₂ = 10°C
Constant: c = 385 J/kg°C, c' = 4200J/kg°C
Substitute these values into equation 1
50(385)(140-t₃) = 90(4200)(t₃-10)
(140-t₃) = 378000(t₃-10)/19250
(140-t₃) = 19.64(t₃-10)
140-t₃ = 19.64t₃-196.6
19.64t₃+t₃ = 196.4+140
20.64t₃ = 336,4
t₃ = 336.4/20.6
t₃ = 16.33°C
Jemima is running with a velocity of 5m/s. She has a mass of 65kg, what is her kinetic energy would be 812.5 Joules.
<h3>What is mechanical energy?</h3>
Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
As given in the problem we have to calculate the Kinetic energy of the Jemima,
Kinetic energy = 1/2 ×mass×velocity²
=0.5×65×5²
=812.5 Joules
Thus, the kinetic energy of the Jemima would be 812.5 Joules.
To learn more about mechanical energy, refer to the link;
brainly.com/question/12319302
#SPJ1
Explanation. A gas will expand to fill its container. Pulling the plunger of the syringe creates a low pressure inside the syringe (a vacuum)