Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.
On an approximate scale, A child breaths 20 times a minute as compared to only 12 to 16 in resting phase of an Adult.
So, In 60 minutes (1 hour), They breathe = 20 * 60 = 1200
In 24 hours (1 day), They breathe = 1200 * 24 = 28,800
In short, Your Answer would be: 28,800
Hope this helps!
Answer:
A
Explanation:
Kinetic energy must be moving. Potential energy has the ability to move but is not doing so at the moment.
A is likely the answer. But there's lots involved in that kind of motion.
B If the ball is elevated, it implies it is not moving yet. It has potential energy.
C Again, the spring is compressed. It will push something when it moves, but it is not moving yet.
D The load gun's bullet is not moving. It's still potential energy.
E. The mouse trap is set, but it is not moving. When the mouse eats the bait then it's potential energy will transform into kinetic energy.
Answer:
$893
Explanation: the complete question should be
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)
SOLUTION
Given:
The clothes washe power consumption (PC) is 470 kWh
Price of the washer (P) is $360
lifetime of the washer (L) is 10 yrs
Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)
maintenance cost (M) is $11 per year
Lifecycle cost = P + (PC × L × E) +M + L
Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)
=$893
Answer:
There are two reasons why air pressure decreases as altitude increases: density and depth of the atmosphere. Most gas molecules in the atmosphere are pulled close to Earth's surface by gravity, so gas particles are denser near the surface.
Explanation: