Given:
∠PRS and ∠VUW are supplementary.
To prove:
Line TV || Line QS
Solution:
Step 1: Given
∠PRS and ∠VUW are supplementary.
Step 2: By the definition of supplementary angles

Step 3: Angles forming a linear pair sum to 180°

Step 4: By transitive property of equality
step 2 = step 3

Step 5: By algebra cancel the common terms in both side.

Step 6: By converse of corresponding angles postulate
Line TV || Line QS
Hence proved.
Answer:
Reason 2
Step-by-step explanation:
The reason should be transitive property( if a=b and b=c then a=c) not reflective property.
Answer:
C.(3|-4)
Step-by-step explanation:
Given the vector:
![\left[\begin{array}{ccc}4\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
The transformation Matrix is:
![\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D)
The image of the vector after applying the transformation will be:
![\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\left[\begin{array}{ccc}4\\3\end{array}\right]\\\\=\left[\begin{array}{ccc}0*4+1*3\\-1*4+0*3\end{array}\right]\\\\=\left[\begin{array}{ccc}3\\-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C3%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2A4%2B1%2A3%5C%5C-1%2A4%2B0%2A3%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C-4%5Cend%7Barray%7D%5Cright%5D)
The correct option is C
Answer:
This linear system has one solution.
Step-by-step explanation:
First equation: y = x + 2
Second equation: 6x - 4y = -10
Let's change the second equation in slope-intercept form y = mx + b.
<u>Slope-intercept form</u>
y = mx + b
m ... slope
b ... y-intercept




If two lines have the <em>same slope </em>but <em>different y-intercept</em>, they are parallel - <u>system has no solutions</u>.
If two lines have the <em>same slope</em> and the <em>same y-intercept</em>, they are the same line and are intersecting in infinite many points - <u>system has infinite many solutions</u>.
If two lines have <em>different slopes</em> then they intersect in one point - <u>system has one solution</u>.
We see that lines have different slopes. First line has slope 1 and the other line has slope
. So the system has one solution.
You can also check this by solving the system.
Substitute y in second equation with y from first.
6x - 4y = -10
6x - 4(x + 2) = -10
Solve for x.
6x - 4x - 8 = -10
2x = -2
x = -1
y = x + 2
y = -1 + 2
y = 1
The lines intersect in point (-1, 1). <-- one solution