In order to answer this question we might first want to think about what is electromagnetic radiation. In essence it’s light, just some of the wavelengths are too long or too short for us to see.
We can think about it as two oscillating sinusoidal (goes up and down) waves, one is electric, the other is magnetic.
Because we’re dealing in waves, that means we can calculate their frequency, wavelength, amplitude (brightness) and period.
To calculate it we can use E=hc/lambda
Where E = jewels of energy
h = Planck’s constant
c = speed of light
Lambda = wavelength
It doesn’t really matter for this question what those things mean, just note that it takes more energy to have a shorter wavelength, or less energy to have a longer wavelength.
So now we can answer the question. Light of a longer wavelength has less energy than that of a shorter wavelength. So, when long wavelengths are absorbed by matter (atoms) they will give those atoms less energy. So, either it will pass through the object entirely or it will make the atoms vibrate a little bit more than they already are and we call that thermal energy, or heat.
If high energy wavelengths are passing through matter then they will be giving those atoms a lot of energy, sometimes even ionizing the atoms.
Which, if you’re a living thing can be very bad for your cells.
I hope that helps.
Neutralize it with a alkaline
8A+2B——> 6C
since you multiply by a factor of 2 you do that to each letter
4*2=8
1*2=2
3*2=6
The original material has decayed 75%
<h3>Further explanation</h3>
Given
two half-life
Required
The decayed sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
t = 2 x t 1/2
Input the value :
The amount of Nt = 25% No