<u>Answer: </u>The equation which is wrong is 
<u>Explanation:</u>
For the given reaction:

The expression for
is given by:
![K_c=\frac{1}{[O_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B1%7D%7B%5BO_2%5D%5E3%7D)
![K_p=\frac{1}{[O_2]^3}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B1%7D%7B%5BO_2%5D%5E3%7D)
The concentration of solids are taken to be 1, only concentration of gases and liquid states are taken. The pressure of only gases are taken.
Relationship between
is given by the expression:

where,
= number of moles of gaseous products - number of moles of gaseous reactants
R = gas constant
T= temperature
For the above reaction,
= number of moles of gaseous products - number of moles of gaseous reactants = 0 - 3 = -3
Hence, the expression for
is:

Therefore, the equation which is wrong is 
Answer:
28500 years
Explanation:
Applying,
A = A'(
)............... Equation 1
Where A = Original mass of Carbon-14, A' = Final mass of carbon-14 after decaying, x = total time, y = half-life.
From the question,
Given: A = 1 g, A' = 31.3 mg = 0.0313 g, y = 5700 years.
Substitute these values into equation 1
1 = 0.0313(
)
= 1/0.0313
= 31.95
≈ 32
≈ 2⁵
Equating the base and solve for x
x/5700 ≈ 5
x ≈ 5×5700
x ≈ 28500 years
Since abiotic is a non living factor B would be the answer because water is abiotic