1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
4 years ago
6

Radio waves are primarily used to

Chemistry
1 answer:
Firlakuza [10]4 years ago
8 0

Answer:

Radio is used primarily for communications including voice, data and entertainment media.

You might be interested in
The information below describes a redox reaction.
Rashid [163]

Answer:

Al°(s)  + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)

Explanation:

Oxidation:                            Al°(s) =>   Al⁺³(aq) + 3e⁻

Reduction:           3Ag⁺(aq) + 3e⁻ => 3Ag°(s)

_________________________________________

Net Rxn:           Al°(s)  + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)

One mole of neutral aluminum atoms (Al°(s)) undergo oxidation delivering 3 moles  of electrons to 3 moles silver ions (3Ag⁺³(aq)) that are reduced to 3 moles of neutral silver atoms (3Ag°(s)) in basic standard state 25°C; 1atm.

7 0
3 years ago
A solution is prepared by dissolving 10.8 g ammonium sulfate in enough water to make 100.0 mL of stock solution. A 10.00 mL samp
kari74 [83]

Answer:NH

+

4

:

0.272

M

SO

2

−

4

:

0.136

M

Explanation:

We can solve this problem using some molarity calculations:

molarity

=

mol solute

L soln

We should convert the given mass of

(NH

4

)

2

SO

4

to moles using its molar mass (calculated to be

132.14

g/mol

):

10.8

g (NH

4

)

2

SO

4

⎛

⎝

1

l

mol (NH

4

)

2

SO

4

132.14

g (NH

4

)

2

SO

4

⎞

⎠

=

0.0817

mol (NH

4

)

2

SO

4

This is the quantity present in

100

mL soln

, so let's calculate the molarity of the solution (converting volume to liters):

molarity

=

0.0817

l

mol (NH

4

)

2

SO

4

0.100

l

L soln

=

0.817

M

10

mL

of this solution is added to

50

mL H

2

O

, which makes a

60

-

mL

total solution.

We can now use the dilution equation

M

1

V

1

=

M

2

V

2

to find the molality of the new,

60

-

mL

solution:

(

0.0817

M

)

(

10

l

mL

)

=

(

M

2

)

(

60

l

mL

)

M

2

=

(

0.817

M

)

(

10

mL

)

60

mL

=

0.136

M

This means that there are

0.136

moles of

(NH

4

)

2

SO

4

per liter of solution.

Let's recognize that

1

mol (NH

4

)

2

SO

4

contains

2

mol NH

+

4

1

mol SO

2

−

4

The concentrations of each ion is thus

(

2

)

(

0.136

M

)

=

0.272

M

NH

+

4

(

1

)

(

0.136

M

)

=

0.136

M

SO

2

−

4

Explanation:

7 0
3 years ago
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
According to the _____ hypothesis the solar system formed from a cloud of dust and gas
telo118 [61]
Isn't is the big bang theory
4 0
4 years ago
Read 2 more answers
Why is it important that organisms reproduce in a variety of ways?
hjlf

Hello, this is what I found, Hope it helped

A variety of different ways to reproduce permits a diverse range of organisms to survive a variety of environmental changes.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Positive Deviation from Raoult's Law occurs when the vapour pressure of component is greater than what is expected in Raoult's L
    12·1 answer
  • How many moles of H2O are produced when 64.0 g C2H2 burns in oxygen
    14·1 answer
  • Increasing temperature can
    8·2 answers
  • PLEASE HELP ASAP!!!
    13·2 answers
  • Which shell is the outermost for oxygen?<br> A 192<br> B. 292<br> C. 252P<br> D. 2P
    15·1 answer
  • Which of the following models best describes the arrangement of valence electrons in metals?
    8·1 answer
  • How is good at electron configurations in chemistry?
    14·1 answer
  • A process in which plants take in light from the Sun to make their own food is called _____.
    6·1 answer
  • Which is a chemical property of soda ash?
    7·2 answers
  • I NEED HELP!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!