Answer : The pH of a 0.1 M phosphate buffer is, 6.86
Explanation : Given,

Concentration of acid = 0.1 M
Concentration of conjugate base (salt) = 0.1 M
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of a 0.1 M phosphate buffer is, 6.86
Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
Answer:
2.25 M is the final concentration of hydroxide ions ions in the solution after the reaction has gone to completion.
Explanation:
Moles of NaOH = 
Molarity of the nitric acid solution = 0.250 M
Volume of the nitric solution = 0.150 L
Moles of nitric acid = n



According to reaction, 1 mole of nitric acid recats with 1 mole of NaOH, then 0.0375 moles of nitric acid will react with :
of NaOH
Moles of NaOH left unreacted in the solution =
= 0.375 mol - 0.0375 mol = 0.3375 mol

1 mole of sodium hydroxide gives 1 mol of sodium ions and 1 mole of hydroxide ions.
Then 0.3375 moles of NaOH will give :
of hydroxide ion
The molarity of hydroxide ion in solution ;

2.25 M is the final concentration of hydroxide ions ions in the solution after the reaction has gone to completion.
Endothermic reaction is the answer.
The percent composition of each element can be calculated as follows:
% composition = (mass of element / total mass) * 100
The total mass of the quarter is given to be 5.670 grams
Mass of Cu = 5.198 grams
Mass of Ni = 0.472 grams
Substitute in the above equation to get the mass percentage of each element as follows:
% of Cu = (5.198/5.670) * 100 = 91.675%
% of Ni = (0.472/5.670) * 100 = 8.325%