Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
You'll be using the equation f = m a, or force = mass x acceleration
First, you have to find the acceleration. The acceleration needed is the average acceleration over the 15 seconds is accelerated. So, you take the change in speed (25m/s - 15m/s) to get a change of 10m/s.
The average acceleration (acceleration per second) is found by dividing total acceleration by the time it took. So, it's 10 / 15, which equals .6. This is a, your acceleration
Now just plug it into the equation F = m a, because it already gives you the mass of the car
F = 550 x .6
Solve that to get F = 366.6. F is measured in Newtons (N), so your answer is 366.6N
According to cuneiform tablets in the ancient world, straight lines cannot cross, and no motion in the world is not relative. Btw...I KNOW!!! GOT MILK???