Answer:
the skill level of players
Explanation:
Doppler Shift lets you see a star A. Move back and forth
<h3>What is Doppler Shift?</h3>
This refers to the frequency change of a wave in relation to an observer as it moves back and forth.
Hence, we can see that the thing which astronomers can learn from the Radial Velocity Method is D. Period of orbit and minimum mass of a planet as it measures the wavelengths of absorption lines in its spectrum.
Read more about doppler shift here:
brainly.com/question/4052291
#SPJ1
Sound is a mechanical wave <span>that results from the back and forth vibration of the particles of the medium through which the sound wave is moving. If a sound wave is moving from left to right through air, then particles of air will be displaced both rightward and leftward as the energy of the sound wave passes through it. The motion of the particles is parallel (and anti-parallel) to the direction of the energy transport. This is what characterizes sound waves in air as longitudinal waves.</span><span>
</span>
Apply conservation of angular momentum:
L = Iw = const.
L = angular momentum, I = moment of inertia, w = angular velocity, L must stay constant.
L must stay the same before and after the professor brings the dumbbells closer to himself.
His initial angular velocity is 2π radians divided by 2.0 seconds, or π rad/s. His initial moment of inertia is 3.0kg•m^2
His final moment of inertia is 2.2kg•m^2.
Calculate the initial angular velocity:
L = 3.0π
Final angular velocity:
L = 2.2w
Set the initial and final angular momentum equal to each other and solve for the final angular velocity w:
3.0π = 2.2w
w = 1.4π rad/s
The rotational energy is given by:
KE = 0.5Iw^2
Initial rotational energy:
KE = 0.5(3.0)(π)^2 = 14.8J
Final rotational energy:
KE = 0.5(2.2)(1.4)^2 = 21.3J
There is an increase in rotational energy. Where did this energy come from? It came from changing the moment of inertia. The professor had to exert a radially inward force to pull in the dumbbells, doing work that increases his rotational energy.
Answer:
A. 2.2*10^-2m
Explanation:
Using
Area = length x L/ uo xN²
So A = 0.7m * 25 x 10^-3H /( 4π x10^-7*
3000²)
A = 17.5*10^-3/ 1.13*10^-5
= 15.5*10^-2m²
Area= π r ²
15.5E-2/3.142 = r²
2.2*10^2m
Explanation: