Observe that the object below moves in the negative direction with a changing velocity. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a positive acceleration). The dot diagram shows that each consecutive dot is not the same distance apart (i.e., a changing velocity). The position-time graph shows that the slope is changing (meaning a changing velocity) and negative (meaning a negative velocity). The velocity-time graph shows a line with a positive (upward) slope (meaning that there is a positive acceleration); the line is located in the negative region of the graph (corresponding to a negative velocity). The acceleration-time graph shows a horizontal line in the positive region of the graph (meaning a positive acceleration).
I don't know how I can show you the figure
Average v = (initial v + final v)/2
= (14 m/s + 0 m/s)/2
= 7 m/s
Your average velocity during braking is 7 m/s
Answer:
1.52m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute the given values into the formula
0.013(270)+2(130) = (270+130)v
3.51+260 = 400v
263.51 = 400v
v = 400/263.51
v = 1.52m/s
Hence the velocity after the bullet emerges is 1.52m/s
Answer:
When the ball hits the ground, the velocity will be -34 m/s.
Explanation:
The height and velocity of the ball at any time can be calculated using the following equations:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height of the ball at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).
v = velocity at time "t".
If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:
y = y0 + v0 · t + 1/2 · g · t²
0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 = 60 m - 4.9 m/s² · t²
-60 m / -4.9 m/s² = t²
t = 3.5 s
Now, with this time, we can calculate the velocity of the ball when it reaches the ground:
v = v0 + g · t
v = 0 m/s - 9.8 m/s² · 3.5 s
v = -34 m/s
When the ball hits the ground, the velocity will be -34 m/s.