Do I need to solve 12.046 x 10^25 to get the answer
Answer:
P.E = 25.48 J
Explanation:
Given data:
Mass = 2 Kg
Height = 1.3 m
Potential energy = ?
Solution:
Formula:
P.E = m . g . h
P. E = potential energy
m = mass in kilogram
g = acceleration due to gravity
h = height
Now we will put the values in formula.
P.E = m . g . h
P.E = 2 Kg . 9.8 m /s² . 1.3 m
P.E = 25.48 Kg. m² / s²
Kg. m² / s² = J
P.E = 25.48 J
When equilibrium has been reached so, according to this formula we can get the specific heat of the unknown metal and from it, we can define the metal as each metal has its specific heat:
Mw*Cw*ΔTw = Mm*Cm*ΔTm
when
Mw → mass of water
Cw → specific heat of water
ΔTw → difference in temperature for water
Mm→ mass of metal
Cw→ specific heat of the metal
ΔTm → difference in temperature for metal
by substitution:
100g * 4.18 * (40-39.8) = 8.23 g * Cm * (50-40)
∴ Cm = 83.6 / 82.3 = 1.02 J/g.°C
when the Cm of the Magnesium ∴ the unknown metal is Mg
The volume of one mole of any gas at Standard Temperature and Pressure (1 atm and 0 degrees Celsius [273K]) is 22.4 L.