Answer:
C) 0.457
Explanation:
The ratio between O2 and H2O is 1:2 according to the balanced equation. You can find how many moles is O2 by : 5.12/22.4 = 0.22857 ( 1 mole = 22.4 litters)
Moles of H2O will be 0.22857 * 2 = 0.457142.
Therefore answer C)
Correct answer is magnesium bromide. This is an ionic compound with metal forming a positive ion - K+ and halogen forming a negative ion - Br-. When group 7 element form ions they have a suffix -ide. Bromine is the element and when it forms a negative ion bromine is called bromide with the suffix.
Magnesium gives 2 electrons and bromine can take only 1 electron, therefore 2 bromine atoms are needed. Therefore magnesium forms ionic bonds with 2 bromine atoms.
The compound is called magnesium bromide
Explanation:
elements are based on electrical conductivity
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
Answer:
It is given in the question that molarity of the sulphuric acid is 2M, the volume of the sulphuric acid is 20 mL, the volume of the solution is 1`L.