Hi there!
![\large\boxed{f^{-1}(x) = \sqrt[3]{\frac{x+4}{9} } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7Bf%5E%7B-1%7D%28x%29%20%3D%20%20%5Csqrt%5B3%5D%7B%5Cfrac%7Bx%2B4%7D%7B9%7D%20%7D%20%7D)

Find the inverse by replacing f(x) with y and swapping the x and y variables:

Isolate y by adding 4 to both sides:

Divide both sides by 9:

Take the cube root of both sides:
![y = \sqrt[3]{\frac{x+4}{9} }\\\\f^{-1}(x) = \sqrt[3]{\frac{x+4}{9} }](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Bx%2B4%7D%7B9%7D%20%7D%5C%5C%5C%5Cf%5E%7B-1%7D%28x%29%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Bx%2B4%7D%7B9%7D%20%7D)
The value of g^-1(-3) is the value of x that makes g(x) = -3. To find it, we can solve
.. (x +4)/(2x -5) = -3
.. x +4 = -3(2x -5)
.. 7x = 11
.. x = 11/7
The desired value is
.. (3/11)*g^-1(-3)
.. = (3/11)*(11/7)
.. = 3/7
(-6, 4), (-3, -8), and( 1, -1)