If we assume the given segments are those from the vertices to the point of intersection of the diagonals, it seems one diagonal (SW) is 20 yards long and the other (TR) is 44 yards long. The area (A) of the kite is half the product of the diagonals:
... A = (1/2)·SW·TR = (1/2)·(20 yd)·(44 yd)
... A = 440 yd²
Answer: \sqrt[4]{xy^{2} }
Step-by-step explanation: Siplified
R = 804/91
8.835
this is ur answer i how i helped
1/4 off means 0.25 * 28
7
Sale price = 28-7
= 21
Answer:
a) Angles A and B are 90 degree.
b) The 2 angles are equal
c) From point A having a better chance to kicking the ball in to goal
Step-by-step explanation:
a, b) 2 points are in front of the center and right post of goal. Because there is no detail, we can assume that point A, point B, center of goal, right goal post make up a rectangle. Therefore, the 2 angles are measured equally as 90 degree.
c) Because it's a rectangle, the distance between point A and center of goal is shorter than that between point B and center of goal.