B. When electrons gain energy, they have the power to move up to a higher energy level in an atom.
Answer
find out the number of moles and use the molar ratio (numbers in front of formulas (in this case they are all 1) to determine how many moles of each product you are going to get theoretically
n=m/M is the equation to use to get moles here
30.8 gm/32.04 g/mol=0.9612 moles of the methanol and also of the formaldehyde so
0.9612 moles of the formaldehyde x molar mass (M) 30.73 g/mol= 29.54 gm which is the theoretical yield you already have the actual yield of 24.7 gm
then divide the actual by the theoretical to get the % yield which is 83.6%
Explanation:
Answer:
II
Explanation:
We must have a good idea of the fact that there are two mechanisms that come into play when we are discussing about the addition of hydrogen halides to alkenes. The first is the ionic mechanism and the second is the radical mechanism.
The ionic mechanism is accounted for by the Markovnikov rule while the radical mechanism occurs in the presence of peroxides and is generally referred to as anti Markovnikov addition.
The intermediate in anti Markovnikov addition involves the most stable radical, in this case, it is a tertiary radical as shown in the images attached. The most stable radical is II hence it leads to the major product shown in the other image.
C liquids with different boiling points, to distill you only use one liquid
Answer:
1) P₄ + 5O₂ → P₄O₁₀ redox reaction
2) P₄O₁₀ + 6H₂O → 4H₃PO₄ acid-base reaction
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄ precipitation reaction
Explanation:
The reactions that take place in the <u>electric furnace method</u> are:
1) P₄ + 5O₂ → P₄O₁₀
This is a redox reaction, because the oxidation state of the reactants is changed.
2) P₄O₁₀ + 6H₂O → 4H₃PO₄
This is an acid-base reaction, because there's an exchange of H⁺ species.
The reaction that takes place in the <u>wet process</u> is:
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄
This is an precipitation reaction, because a precipitate (a solid phase in a liquid phase) is formed.