1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
2 years ago
9

D

Mathematics
1 answer:
ss7ja [257]2 years ago
5 0

The area of the <em>irregular</em> quadrilateral ABCD is equal to 234 square centimeters. (Correct choice: C)

<h3>What is the area of the quadrilateral?</h3>

Herein we have a description of an <em>irregular</em> quadrilateral, whose area must be determined by adding the areas of minor quadrilaterals and triangles that are part of it. The area is now determined:

A = 0.5 · (24 cm) · (7 cm) + 0.5 · (15 cm) · (20 cm)

A = 234 cm²

The area of the <em>irregular</em> quadrilateral ABCD is equal to 234 square centimeters. (Correct choice: C)

<h3>Remark</h3>

The picture with the quadrilateral is missing and is included as attachment.

To learn more on quadrilaterals: brainly.com/question/13805601

#SPJ1

You might be interested in
Estimate 970,390+741,206
Alisiya [41]
This would be 1,711,596.
hope this helps!
6 0
3 years ago
Read 2 more answers
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Find the equation of the circle: y-intercepts 4 and –8, contain (–12, –8)
laila [671]

Answer:

  (x +6)^2 +(y +2)^2 = 72

Step-by-step explanation:

The given points are vertices of a right triangle. The circle circumscribing that triangle (through all 3 vertices) will have its center at the midpoint of the hypotenuse:

  ((0, 4) +(-12, -8))/2 = (-6, -2)

The equation of a circle with center (h, k) through point (a, b) is ...

  (x -h)^2 +(y -k)^2 = (a -h)^2 +(b -k)^2

For center (-6, -2) and point (0, 4), the equation is ...

  (x +6)^2 +(y +2)^2 = (0+6)^2 +(4 +2)^2

  (x +6)^2 +(y +2)^2 = 72

6 0
3 years ago
Circle all the ODD number. Underline all the EVEN numbers 122 343 728 910 423
ANEK [815]
13379103 ODD
2242842 EVEN
5 0
3 years ago
Read 2 more answers
Can anyone help me find the area of these two ty
Sphinxa [80]

Answer:

11) 49 in.²

13) 4.515 m²

Step-by-step explanation:

11) area of square = (side)²

area = (7 in.)² = 7 in. × 7 in. = 49 in.²

13) area of triangle = base × height/2

area = 4.3 m × 2.1 m / 2 = 4.515 m²

8 0
2 years ago
Other questions:
  • Write two fractions that are equivalent to each fraction.
    8·1 answer
  • The measure of an angle is 15 degrees what is the measure of its supplementary angle?
    6·2 answers
  • Triangle GHI is similar to triangle JKL. If angle H measures 60 degrees and angle L measures 25 degrees, what is the measure of
    6·1 answer
  • Jacob wants to know how many students in his school enjoy watching space travel programs on TV. He poses this question to all 20
    9·2 answers
  • Please help! I really need help on this. Also if I could get an explanation on this it would really help.
    7·2 answers
  • What do i multiply 36 by to get 24
    9·1 answer
  • 25) Which graph represents the equation below? ) = w+ 2 A ܠܐ 5 4 (2, 4) 3 2 1 (-2,0) -5 -4 -3 -2 -1 0 -1 x 1 2 3 4 5 -2 -3 -4 -5
    6·1 answer
  • It was 4:00 P.M. when John started mowing the lawn and it took him 50 minutes to finish. What time did John finish mowing the la
    13·2 answers
  • What is 40% of 90 people
    10·2 answers
  • What is the mode? please explain
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!