Answer:
x = 8
y = -7
Step-by-step explanation:
This is a system of equations called simultaneous equations. We shall solve it by elimination method Step 1We shall label the equations (1) and (2)−3y−4x=−11.....(1)3y−5x=−61......(2)Step 2Multiply each term in equation (1) by 1 to give equation (3)1(-3y-4x=-11).....(1)-3y-4x=-11....(3)Step 3Multiply each term in equation 2 by -1 to give equation (4)-1(3y−5x=−61)......(2)-3y+5x=61.....(4)Step 4-3y-4x=-11....(3)-3y+5x=61.....(4)Subtract each term in equation (3) from each term in equation (4)-3y-(-3y)+5x-(-4x)=61-(-11)-3y+3y+5x+4x=61+110+9x=729x=72Step 5Divide both sides of the equation by 9, the coefficient of the unknown variable x to find the value of x 9x/9 = 72/9x = 8Step 6Put in x = 8 into equation (2)3y−5x=−61......(2)3y-5(8)=-613y-40=-61Collect like terms by adding 40 to both sides of the equation 3y-40+40=-61+403y=-21Divide both sides by 3, the coefficient of y to find the value of y 3y/3=-21/3y=-7Therefore, the values of x and y that satisfy the equations are 8 and -7 respectively
(−0.0081p)(t)=(15000)(2.718282)
Step 1: Divide both sides by -0.0081t.
−0.0081pt
−0.0081t
=
40774.227427
−0.0081t
p=
−40774.227427
0.0081t
Answer:
p=
−40774.227427
0.0081t
Considerando las fórmulas para el perímetro y el área de un rectángulo, hay que se chega en una <u>eccuación cuadrática sin solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
<h3>¿Cuál es la fórmula para el perímetro y el área de un rectángulo?</h3>
Considerando que las dimensiones son l y w, hay que:
- El perímetro es: P = 2(l + w).
El <u>perímetro es de 18 m</u>, o sea:
2(l + w) = 18
l + w = 9
l = 9- w.
El <u>área es de 21 m²</u>, o sea:
lw = 21
(9- w)w = 21
-w² + 9 - 21 = 0
w² - 9w + 21 = 0
El discriminante es dado por:
D = 9² - 4 x 1 x 21 = -3.
El discriminante negativo implica que la <u>eccuación cuadrática no tiene solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
Puede-se aprender más a cerca de el perímetro y el área de un rectángulo en brainly.com/question/26475963
#SPJ1
Answer:
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they are in favor of making the Tuesday before Thanksgiving a holiday, or they are against. This means that we can solve this problem using concepts of the binomial probability distribution.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
So, the binomial probability distribution has two parameters, n and p.
In this problem, we have that
and
. So the parameter is
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Answer:
-2/3
Step-by-step explanation:
If you use the formula y2-y1/x2-x1 your answer will be -2/3