Answer:
A) 300
B) 3:1
C) 9 long yellow : 3 long green : 3 short yellow : 1 short green
Explanation:
Long stems (L_) are dominant to short stems (ll)
Yellow seeds (Y_) are dominant to green seeds (yy)
We interbred pea plants with long stems and yellow seeds (L_Y_), but they had a short green parent (llyy) that could have only produced <em>ly</em> gametes, so our plants are heterozygous <em>LlYy</em>.
C) We interbred them LlYy x LlYy. If the two genes are unlinked, this is a typical dihybrid cross and from Mendel's law of independent assortment we know that the offspring will have the following phenotypic ratios:
- 9/16 L_Y_ (Long, yellow)
- 3/16 L_yy (Long, green)
- 3/16 llY_ (short, yellow)
- 1/16 llyy (short, green)
A) 3/16 × 1600 = 300 plants will be long and green.
B)
9/16 + 3/16 = 12/16= 3/4 plants will be yellow;
3/16 + 1/16 = 4/16= 1/4 plants will be green.
The ratio will be 3 yellow : 1 green
Answer:
I looked this one up for u ;)
Flowering plants. ... Sexual reproduction in flowering plants involves the production of male and female gametes, the transfer of the male gametes to the female ovules in a process called pollination. After pollination occurs, fertilization happens and the ovules grow into seeds within a fruit.
Answer:
the "second law of Mendel", or principle of independent distribution, states that during the formation of gametes, each pair of alleles segregates independently of the other pairs.
Explanation:
Mendel's second Law is also known as the Law of Segregation, also as the Law of Equitable Separation, and also as the Law of Disjunction of the Alleles. This Second Law of Mendel is fulfilled in the second filial generation, that is to say, from the parents to the first generation, the First Law of Mendel is fulfilled, and after the children of the first generation this Second Law of Mendel is fulfilled.
This 2nd Law of Mendel, speaks of the separation of the alleles in each of the crossing between the members of the first generation, who would now become parental of the second generation, for the formation of a new child gamete with certain characteristics.
Since each allele is separated to constitute features that do not belong to the first filial generation, but to that of the parents. That is to say that many of the most obvious features in the recessive allele would be present when a generation leaps. All this in relative proportion to the number of individuals in the second subsidiary generation.
If a population grows larger than the carrying capacity of the enviromment, there will be more organisms than the environmental can support