Answer:
The best estimate of the depth of the well is 2.3 sec.
Explanation:
Given that,
Record time,





We need to find the best estimate of the depth of the well
According to record time,
We can write of the record time





Here, all time is nearest 2.3 sec.
So, we can say that the best estimate of the depth of the well is 2.3 sec.
Hence, The best estimate of the depth of the well is 2.3 sec.
Answer:
T = 0.225 s
Explanation:
The speed of a projectile at the highest point of its motion is the horizontal speed of the projectile. Considering the horizontal motion with negligible air resistance, we can use the following formula:

where,
T = Total time of ball in air = ?
R = Horizontal distance covered = 40 m
= horizontal speed = 9 m/s
Therefore,

<u>T = 0.225 s</u>
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:

Doing the summation using their respective lever arms:


Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

Now, let's solve for 'T'.

Plugging in the values:
