Answer:
The magnification is a function of the lenses in the objective and the eyepiece, so the magnification of the two must be multiplied to obtain the total magnification possible. So, for example, if the objective lens was 4X and the eye piece lens was 10X, the total magnification would be 40. (4 x 10 = 40)
Explanation:
According to Ohm’s law, the ratio of voltage to current in a conductor is constant.
Answer: Option A
<u>Explanation:</u>
Ohm's law defines that an electric current flowing through the conductor between two ends is directly proportionate to the voltage at these two points. The introduction of a constant proportionality, resistance, gives a simple mathematical equation describing this relationship. Particularly, Ohm's law also mentions that R is constant in this respect, i.e. not dependent on the current.

Where,
I is the current conduction in amperes
V is the voltage calculated by the conductor in volts
R is the conductor’s resistance in ohms.
Answer:
K = 588.3 N/m
Explanation:
From a forces diagram, and knowing that for the maximum value of K, the crate will try to rebound back up (Friction force will point downward):
Fe - Ff - W*sin(22) = 0 Replacing Fe = K*X and then solving for X:

By conservation of energy:

Replacing our previous value for X and solving the equation for K, we get maximum value to prevent the crate from rebound:
K = 588.3 N/m
Basketball is played with two<span> teams, with </span>4 players<span> from each team on the court at one time. The maximum number of players on the bench differs by league. In international play, a maximum of </span>7 players<span> are allowed on the bench, resulting in a roster of </span>12 players<span>.
I hope this helps!
</span>
Answer:
0.6 μC
Explanation:
C = capacitance of the capacitor = 100 x 10⁻¹² F
d = separation between the plates of capacitor = 1 mm = 1 x 10⁻³ m
E = Electric field = 6 x 10⁶ N/C
Q = Amount of charge
V = Potential difference
Potential difference is given as
V = E d
Amount of charge stored is given as
Q = CV
hence
Q = C E d
inserting the values
Q = (100 x 10⁻¹²) (6 x 10⁶) (1 x 10⁻³)
Q = 6 x 10⁻⁷ C
Q = 0.6 μC