Answer: Heat Energy
Explanation:
Heat is energy in its most disordered form. heat energy is the random jostling of molecules and is therefore not organized. As cells perform the chemical reactions that generate order within, some energy is inevitably lost in the form of heat. Because the cell is not an isolated system, the heat energy produced by the cell is quickly dispersed into the cell's surroundings where it increases the intensity of the thermal motions of nearby molecules. This increases the entropy of the cell's environment and keeps the cell from violating the second law of thermodynamics.
Answer:
Explanation:
In case of diffraction , angular width of central maxima =2 λ/d
λ is wave length of light and d is slit width
In case of interference , angular width of each fringe
= λ /D
D is distance between two slits
No of interference fringe in central diffraction fringe
=2 λ/d x D/λ = 2 x D /d = 2 x .24/.03 = 16.
Answer:
6.14 s
Explanation:
The time the rocket takes to reach the top is only determined from its vertical motion.
The initial vertical velocity of the rocket is:

where
u = 100 m/s is the initial speed
is the angle of launch
Now we can apply the suvat equation for an object in free-fall:

where
is the vertical velocity at time t
is the acceleration of gravity
The rocket reaches the top when

So by substituting into the equation, we find the time t at which this happens:

We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!