1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
2 years ago
9

Solve algebraically:

Mathematics
2 answers:
vichka [17]2 years ago
6 0
<h3>Answer:</h3>

a)\ x_1=-9,\ x_2=9\\\\b)\ x_1=1,\ x_2=5

<h3>Step-by-step explanation:</h3>

<u>Given equations:</u>

a)\ 2x^2 - 162 = 0\\\\b) -\dfrac{1}{2}(x-3)^2=-2

A) 2x² - 162 = 0

Step 1: Divide both sides by 2.

<h3>\\\implies \dfrac{2x^2 - 162}{2} = \dfrac{0}{2}\\\\\implies x^2-81=0\\\\\implies x^2=81</h3>

Step 2: Take the square root of both sides (using both the positive and negative roots).

\\\implies \sqrt{x^2}=\sqrt{81}\\\\\implies x=\pm\ 9

Step 3: Separate into two cases.

\implies x_1 = -9,\ x_2 =-9

----------------------------------------------------------------------------------------------------------------

B) -1/2(x - 3)² = -2

Step 1: Multiply both sides by -2.

\\\implies -2\left(-\dfrac{1}{2}(x-3)^2\right)=-2(-2)\\\\\implies (x-3)^2=4

Step 2: Take the square root of both sides (using both the positive and negative roots).

\\\implies\sqrt{(x-3)^2}=\sqrt{4}\\\\\implies x-3=\pm\ 2

Step 3: Separate into two cases and solve each one.1)\ x-3=-2\implies x=-2+3\implies \boxed{x=1}\\\\2)\ x-3=2\implies x=2+3\implies \boxed{x=5}

alex41 [277]2 years ago
3 0

\huge\text{Hey there!}

\huge\textbf{Equation a.}

\rm{2x^2 - 162 = 0}

\huge\textbf{Solving for:}

\rm{2x^2 - 162 = 0}

\huge\textbf{Add \boxed{\bf 162} to both sides:}

\rm{2x^2 - 162 + 162 = 0 + 162}

\huge\textbf{Simplify it:}

\rm{2x^2 = 0 + 162}

\rm{2x^2 = 162}

\huge\textbf{Divide \boxed{\bf 2} to both sides:}

\rm{\dfrac{2x^2}{2} = \dfrac{162}{2}}

\huge\textbf{Simplify it:}

\rm{x^2 = \dfrac{182}{2}}

\rm{x^2 = 81}

\huge\textbf{Take the square root of \boxed{\bf 81}}

\rm{x = \pm \sqrt{81}}

\rm{x = 9\ or\ x = -9}

\huge\textbf{Therefore, your answer should be:}

\huge\boxed{\textsf{x = } \frak{9\ or } \ \textsf{x = }\frak{-9}}\huge\checkmark

\huge\textbf{Equation b.}

\rm{-\dfrac{1}{2}(x - 3)^2 = -2}

\huge\textbf{Solving for:}

\rm{-\dfrac{1}{2}(x - 3)^2 = -2}

\huge\textbf{Simplify both sides of your equation:}

\rm{-\dfrac{1}{2}x^2 + 3x - \dfrac{9}{2} = -2}

\huge\textbf{Subtract \boxed{\bf -2} to both sides:}

\rm{-\dfrac{1}{2}x^2 + 3x - \dfrac{9}{2} - (-2) = -2 - (-2)}

\huge\textbf{Simplify it:}

\rm{- \dfrac{1}{2}x^2 + 3x - \dfrac{5}{2} = 0}

\huge\textbf{Now, we can convert the equation to:}

\rm{-0.5x^2 + 3x - 2.5 = 0}

\large\text{When we changed the equation entirely, we made it easier to solve}\uparrow

\huge\textbf{Use the quadratic formula to solve.}

\large\textsf{The quadratic formula:}

\mathsf{x= \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}}

\huge\textbf{Here are your labels:}

\text{a = }\rm{-0.5}\\\\\text{b = }\rm{ 3}\\\\\rm{c = }\rm{\ -2.5}

\huge\textbf{Your new equation:}

\rm{x = \dfrac{-(3) \pm \sqrt{3^2 - 4(-0.5)(-2.5)}}{2(-0.5)}}

\huge\textbf{Simplify it:}

\rm{x = \dfrac{-3 \pm \sqrt{4}}{-1}}

\rm{x = 1\ or \ x = 5}

\huge\textbf{Therefore, your answer should be: }

\huge\boxed{\textsf{x = }\frak{1}\ \textsf{or x = }\frak{5}}\huge\checkmark

\huge\text{Good luck on your assignment \& enjoy your day!}

<h3>~\frak{Amphitrite1040:)}</h3>
You might be interested in
Can someone help me with this
harina [27]
So the first box is 6 and the first for the second row is 9 then 13.5 then the last last on the one all the way to the right is 0 then last is 2664 then that’s it plz mark brainliest

3 0
3 years ago
Read 2 more answers
If x=4 what is the value of x to the power of 2-2 x
Oksi-84 [34.3K]

Answer:

1/4096

we sub in the 4

4^2-8 = so 4^-6

1/4096

4 0
3 years ago
Fit a trigonometric function of the form f(t)=c0+c1sin(t)+c2cos(t)f(t)=c0+c1sin⁡(t)+c2cos⁡(t) to the data points (0,5.5)(0,5.5),
larisa86 [58]

Answer

f(t)=-0.2+4.1sin(t)+4cos(t)

Step-By-Step Explanation

Given the function f(t)=c_0+c_1sin(t)+c_2cos(t).

For each pair (t, f(t)) in the data points (0,5.5), (π/2,0.5), (π,−2.5), (3π/2,−7.5)

f(0)=c_0+0c_1+c_2=5.5.

f(\pi /2)=c_0+c_1+0c_2=0.5.

f(\pi)=c_0+0sin(t)-c_2=-2.5.

f(3\pi /2)=c_0-c_1+0c_2=-7.5.

Expressing this as a system of linear equations in matrix form AX=B

\left(\begin{array}{ccc}   1 & 0 & 1 \\   1 & 1 & 0 \\   1 & 0 & -1 \\   0 & -1 & 0    \end{array}   \right)\left(   \begin{array}{c}   c_{0} \\   c_{1} \\   c_{2}\\   \end{array}   \right)=\left(\begin{array}{c}   5.5 \\   0.5 \\   -2.5 \\   -7.5    \end{array}   \right)      

Where    

A=\left(\begin{array}{ccc}   1 & 0 & 1 \\   1 & 1 & 0 \\   1 & 0 & -1 \\   0 & -1 & 0    \end{array}   \right),      

B=\left(\begin{array}{c}5.5\\0.5\\-2.5\\-7.5\end{array} \right)

X=\left(\begin{array}{c}c_0\\c_1\\c_2\end{array}\right)     

To determine the values of X, we use the expression  

X=(A^{T}A)^{-1}A^{T}B      

A^{T}A= \left(\begin{array}{ccc}   3 & 1 & 0 \\   1 & 2 & 0 \\   0 & 0 & 2    \end{array}   \right)

(A^{T}A)^{-1}= \left(\begin{array}{ccc}   0.4 & -0.2 & 0 \\   -0.2 & 0.6 & 0 \\   0 & 0 & 0.5    \end{array}   \right)      

A^{T}B=\left(\begin{array}{c}   3.5 \\   8 \\   8    \end{array}   \right)      

Therefore:    

X=\left(\begin{array}{ccc}   0.4 & -0.2 & 0 \\   -0.2 & 0.6 & 0 \\   0 & 0 & 0.5    \end{array}   \right)\left(   \begin{array}{c}   3.5 \\   8 \\   8    \end{array}   \right)      

X=\left(\begin{array}{c}c_0\\c_1\\c_2\end{array}\right)=\left(\begin{array}{c} -0.2 \\4.1\\4\end{array}\right)  

Therefore, the trigonometric function which fits to the given data is:

f(t)=-0.2+4.1sin(t)+4cos(t)

8 0
3 years ago
Simplify 4√27 + 6√75
Nataly_w [17]
4\sqrt{27}+6\sqrt{75}
=4*3\sqrt{3}+6*5\sqrt{3}
=12\sqrt{3}+30\sqrt{3}
=42\sqrt{3}
7 0
3 years ago
Read 2 more answers
The function y = –0.296x2 + 2.7x models the length x and height y that your sister's pet rabbit can jump, in centimeters. How hi
Ne4ueva [31]
To figure out the solution in a problem related to calculate maximum or minimum of something, you've to derive the involved equation, and make it equal to 0, solving the x.

So:
y = -0'296x² + 2'7x
y' = -0'592x + 2'7
0 = <span>-0'592x + 2'7
</span><span>-0'592x = 2'7
</span>x = 4'56

And if we substitute 4'56 on the first equation:
y = -0'296·<span>4'56² + 2'7·4'56
y = 6'16

So the length of the jump is 4'56cm, and the height 6'16cm.</span>
8 0
4 years ago
Read 2 more answers
Other questions:
  • A classroom has more boys than girls, and it has 8 girls. Furthermore, each student in the classroom has at least 2 pencils. Let
    5·1 answer
  • What is the answer to 4,400x400
    13·2 answers
  • Which is a name for the ray?
    8·2 answers
  • Which is the graph of the system of inequalities y &gt; 4/5 x – 1/5 and y &lt; 2x + 6
    8·2 answers
  • Elizabeth ran 6 miles in 51 minutes. Assuming she always runs at that pace, how many miles can she run in 30 minutes? Round to t
    5·1 answer
  • 5. Below is the data from randomly sampling 100 students in two different cities
    7·1 answer
  • Please help<br><br> Extra hundred points and brainleist
    13·1 answer
  • Profit, P(x), is the difference between revenue, R(x), and cost, C(x), so P(x) = R(x) - C(x). Which expression represents P(x),
    7·2 answers
  • 1 book costs 6.50$ plus 4.95$ postage. Of Paul spend $63.45 on books, how many books did he buy?
    11·1 answer
  • I need help finding the direction please. 100 points!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!