Answer:
(4,-8)
Step-by-step explanation:
Plug in the answers for the equations.
Answer:
A) The best way to picture this problem is with a probability tree, with two steps.
The first branch, the person can choose red or blue, being 2 out of five (2/5) the chances of picking a red marble and 3 out of 5 of picking a blue one.
The probabilities of the second pick depends on the first pick, because it only can choose of what it is left in the urn.
If the first pick was red marble, the probabilities of picking a red marble are 1 out of 4 (what is left of red marble out of the total marble left int the urn) and 3 out of 4 for the blue marble.
If the first pick was the blue marble, there is 2/4 of chances of picking red and 2/4 of picking blue.
B) So a person can have a red marble and a blue marble in two ways:
1) Picking the red first and the blue last
2) Picking the blue first and the red last
C) P(R&B) = 3/5 = 60%
Step-by-step explanation:
C) P(R&B) = P(RB) + P(BR) = (2/5)*(3/4) + (3/5)*(2/4) = 3/10 + 3/10 = 3/5
Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!
X=2
2x-3=-x+3
add three to both sides
add 1x to each side
should be left with 3x=6
divide both sides by 3 to get x alone
your answer then is x=2
1/a
The b^-3 in the denominator and numerator cancel out