Gallium is a chemical element with symbol Ga and atomic number 31. Elemental gallium does not occur in free form in nature, but as the gallium(III) compounds that are in trace amounts in zinc ores and in bauxite.
Answer:
Because chemical energy is being converted into thermal energy.
Explanation:
Answer:
4.763 × 10⁶ N/C
Explanation:
Let E₁ be the electric field due to the 4.0 μC charge and E₂ be the electric field due to the -6.0 μC charge. At the third corner, E₁ points in the negative x direction and E₂ acts at an angle of 60 to the negative x - direction.
Resolving E₂ into horizontal and vertical components, we have
E₂cos60 as horizontal component and E₂sin60 as vertical component. E₁ has only horizontal component.
Summing the horizontal components we have
E₃ = -E₁ + (-E₂cos60) = -kq₁/r²- kq₂cos60/r²
= -k/r²(q₁ + q₂cos60)
= -k/r²(4 μC + (-6.0 μC)(1/2))
= -k/r²(4 μC - 3.0 μC)
= -k/r²(1 μC)
= -9 × 10⁹ Nm²/C²(1.0 × 10⁻⁶)/(0.10 m)²
= -9 × 10⁵ N/C
Summing the vertical components, we have
E₄ = 0 + (-E₂sin60)
= -E₂sin60
= -kq₂sin60/r²
= -k(-6.0 μC)(0.8660)/(0.10 m)²
= -9 × 10⁹ Nm²/C²(-6.0 × 10⁻⁶)(0.8660)/(0.10 m)²
= 46.77 × 10⁵ N/C
The magnitude of the resultant electric field, E is thus
E = √(E₃² + E₄²) = √[(-9 × 10⁵ N/C)² + (46.77 10⁵ N/C)²) = (√226843.29) × 10⁴
= 476.28 × 10⁴ N/C
= 4.7628 × 10⁶ N/C
≅ 4.763 × 10⁶ N/C
Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.
v = momentum ÷ m
= (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s
kinetic energy = (mv∧2)÷2
= (9.1×10∧-31 × 1,153,846.154∧2) ÷2
= (1.21154×10∧-18) ÷ 2
= 6.05769×10∧-19 J