Answer:
When the muscle is completely contract.
Explanation:
Remember the that maximum force of a muscle is when is completely contract. A characteristic of a muscle is that can contract and can relax in the opposite direction. In this way, when all the microfibers of the muscle are join together (they are contract) is when the maximum tissue force is applied.
With exercise the fibers of the muscles can grow or reproduce to strength the muscle.
Answer: b) Technician B only
Explanation:
For the fact no break fluid flows out Of the bleeder valve when It’s opened, that means there’s a blockage stopping the fluid from flowing off.
What's your question? is it seprete questions
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
The peppered moth is a temperate species of night-flying moth. Peppered moth evolution is an example of population genetics and natural selection.