1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
1 year ago
10

A bag contains 1 white (W), 3 blue (B1, B2, B3), and 2 red (R1, R2) marbles. (4 points)

Mathematics
1 answer:
LekaFEV [45]1 year ago
8 0

The possible outcomes are WH, BH, BH, BH, RH, RH, WL, BL, BL, BL, RL, RL

<h3>How to determine the possible outcomes?</h3>

The given parameters are:

Coin = Head (H) and Tail (T)

Marble = W, B, B, B, R, R

See attachment for the tree diagram

From the tree diagram, we have the following possible outcomes

WH, BH, BH, BH, RH, RH, WL, BL, BL, BL, RL, RL

Read more about tree diagram at:

brainly.com/question/13311154

#SPJ1

You might be interested in
How would you describe a monomial? in less than 25 words.​
bonufazy [111]

Answer:

number, variable, or a product of a number and one or more variables

3 0
2 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
How much wood can a woood chuck chuck
blsea [12.9K]

Answer:

is a wood chcu kcould chuck wood!

Step-by-step explanation:

7 0
2 years ago
Help me solve this please
igomit [66]
The key word here is *square* in "square flower garden". 

So we need to find the area of the flower garden, and subtract it from the overall area of the yard. The remainder will be how much grass covers the yard.

Area of the Square flower garden:
 7.5 * 7.5 = 56.25

Area of the Entire yard:
25 * 18 = 450

450 - 56.25 = 393.75 square feet of grass
6 0
3 years ago
3) Differentiate with respect to x: a) (x²-3x+5)(2x-7)​
9966 [12]

Answer:

6x²-26x+31

Step-by-step explanation:

(x²-3x+5)(2x-7)​

=2x³-7x²-6x²+21x+10x-35

=2x³-13x²+31x-35

Now to differentiate:

dx=6x²-26x+31

4 0
2 years ago
Other questions:
  • a school debate team has 4 girls and 6 boys. A total of 4 of the team members will be chosen to participate in the district deba
    8·1 answer
  • Which table represents a linear function? X 1,2,3,4 Y -2, -6,-2,-6
    11·1 answer
  • 5/3 to the power of 3
    13·1 answer
  • Please HELP<br> MEEE!!!!!!!!!!
    13·1 answer
  • Sixty-five hundred in standard form
    15·2 answers
  • I NEED THIS NOW HELLLPPP PLDDD
    7·1 answer
  • A bottie contains 255 coins.
    11·1 answer
  • A hypothetical population consists of eight individuals ages 13, 14, 17, 20, 21, 22, 24, &amp; 30 years.
    15·1 answer
  • How many warnings can you get before your banned from brainly?
    14·2 answers
  • Between which two tenths is the decimal approximation of √7?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!