Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Wait why do you want me to
Answer:
When the imposter is sus : O
Explanation:
Answer:

Explanation:
The turbine at steady-state is modelled after the First Law of Thermodynamics:

The specific enthalpies at inlet and outlet are, respectively:
Inlet (Superheated Steam)

Outlet (Liquid-Vapor Mixture)

The power produced by the turbine is:



Answer:
Assumption:
1. The kinetic and potential energy changes are negligible
2. The cylinder is well insulated and thus heat transfer is negligible.
3. The thermal energy stored in the cylinder itself is negligible.
4. The process is stated to be reversible
Analysis:
a. This is reversible adiabatic(i.e isentropic) process and thus 
From the refrigerant table A11-A13

sat vapor
m=

b.) We take the content of the cylinder as the sysytem.
This is a closed system since no mass leaves or enters.
Hence, the energy balance for adiabatic closed system can be expressed as:
ΔE
ΔU
)
workdone during the isentropic process
=5.8491(246.82-219.9)
=5.8491(26.91)
=157.3993
=157.4kJ