Based on the calculations, the angle through which the tire rotates is equal to 4.26 radians and 244.0 degrees.
<h3>How to calculate the angle?</h3>
In Physics, the distance covered by an object in circular motion can be calculated by using this formula:
S = rθ
<u>Where:</u>
- r is the radius of a circular path.
- θ is the angle measured in radians.
Substituting the given parameters into the formula, we have;
1.87 = 0.44 × θ
θ = 1.87/0.44
θ = 4.26 radians.
Next, we would convert this value in radians to degrees:
θ = 4.26 × 180/π
θ = 4.26 × 180/3.142
θ = 244.0 degrees.
Read more on radians here: brainly.com/question/19758686
#SPJ1
<span>c. atoms are always in motion..............</span>
Answer:
The observed frequency by the pedestrian is 424 Hz.
Explanation:
Given;
frequency of the source, Fs = 400 Hz
speed of the car as it approaches the stationary observer, Vs = 20 m/s
Based on Doppler effect, as the car the approaches the stationary observer, the observed frequency will be higher than the transmitted (source) frequency because of decrease in distance between the car and the observer.
The observed frequency is calculated as;
![F_s = F_o [\frac{v}{v_s + v} ] \\\\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C)
where;
F₀ is the observed frequency
v is the speed of sound in air = 340 m/s
![F_s = F_o [\frac{v}{v_s + v} ] \\\\400 = F_o [\frac{340}{20 + 340} ] \\\\400 = F_o (0.9444) \\\\F_o = \frac{400}{0.9444} \\\\F_o = 423.55 \ Hz \\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%5B%5Cfrac%7B340%7D%7B20%20%2B%20340%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%280.9444%29%20%5C%5C%5C%5CF_o%20%3D%20%5Cfrac%7B400%7D%7B0.9444%7D%20%5C%5C%5C%5CF_o%20%3D%20423.55%20%5C%20Hz%20%5C%5C)
F₀ ≅ 424 Hz.
Therefore, the observed frequency by the pedestrian is 424 Hz.
⚡️⚡️⚡️Kinetic energy ⚡️⚡️⚡️
Answer:
As the height increases the pressure must increase.
Explanation:
When we add masses to the fluid, the amount of fluid in the tank increases, therefore its height increases and the pressure is described by the expression
P = ρ g h
where rho is constant for a given fluid and h is the height measured from the surface of the fluid.
As the height increases the pressure must increase.