1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
10

In a thermostat, what property of the bimetallic coil allows it to contract and expand? The two metals absorb different amounts

of thermal energy. The two metals are placed perpendicular to each other. The two metals burn at different temperatures. The two metals turn into liquids when absorbing energy.
Physics
2 answers:
vaieri [72.5K]3 years ago
5 0

Answer:

The two metals absorb different amounts of thermal energy.

Explanation:

Temperature controlling device in an electric equipment like a heater, is called a thermostat.

A bimetallic strip contains two different metals. Each metal has its own characteristic property of expansion or cooling. Coefficient of thermal expansion has a different value for different metals.

The metal that has a higher expansion coefficients will expand more when  heated, compared to the metal that has a lower coefficient of expansion.

In a thermostat used in a heating circuit, the electric contact is cut off due to the bending of the bimetallic strip, when the desired temperature is reached.

Reika [66]3 years ago
3 0
Hello!

In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy. 

This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending. 

The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device. 
You might be interested in
In a two-slit experiment using coherent light, the distance between the slits and the screen is 1.10 m, and the distance between
Paul [167]

Answer:

D) 763 nm

Explanation:

Calculation for the wavelength of light

Using this formula

Wavelength of light=Delta Y*Distance / Length

Where,

Delta Y represent the 2nd order bright fringe

Length represent the distance between both the slits and the screen

Distance represent the Distance between the slits

Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)

Now Let plug in the formula

Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters

Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters

Wavelength of light =(0.0000168m/2.2m)*10^-7 meters

Wavelength of light =7.63 *10^-7 meters

Wavelength of light =763 nm

Therefore the Wavelength of light will be 763 nm

3 0
2 years ago
In the two-slit experiment, monochromatic light of frequency 5.00 × 1014 Hz passes through a pair of slits separated by 2.20 × 1
asambeis [7]

Explanation:

It is given that,

Frequency of monochromatic light, f=5\times 10^{14}\ Hz

Separation between slits, d=2.2\times 10^{-5}\ m

(a) The condition for maxima is given by :

d\ sin\theta=n\lambda

For third maxima,

\theta=sin^{-1}(\dfrac{n\lambda}{d})

\theta=sin^{-1}(\dfrac{n\lambda}{d})

\theta=sin^{-1}(\dfrac{nc}{fd})  

\theta=sin^{-1}(\dfrac{3\times 3\times 10^8\ m/s}{5\times 10^{14}\ Hz\times 2.2\times 10^{-5}\ m})  

\theta=4.69^{\circ}

(b) For second dark fringe, n = 2

d\ sin\theta=(n+1/2)\lambda

\theta=sin^{-1}(\dfrac{5\lambda}{2d})

\theta=sin^{-1}(\dfrac{5c}{2df})

\theta=sin^{-1}(\dfrac{5\times 3\times 10^8}{2\times 2.2\times 10^{-5}\times 5\times 10^{14}})

\theta=3.90^{\circ}

Hence, this is the required solution.

8 0
3 years ago
Give two examples of common force fields and name the sources of these fields.
algol13
Electric force from electomagnetic force and force of gravity from gravitational force
4 0
3 years ago
An austrain who lived in vienna who composed graetest music for waltz dance<br>​
Stolb23 [73]
Johann Strauss II



hope this helps
6 0
2 years ago
Under certain circumstances, potassium ions (K+) in a cell will move across the cell membrane from the inside to the outside. Th
choli [55]

Answer:

1.368\times 10^{-20}\ J

Explanation:

q = Charge in the potassium ion = 19e-18e

e = Charge of electron = 1.6\times 10^{-19}\ C

V_2-V_1 = Change in potential = 0-(-85.5\times 10^{-3})

Change in electric potential is given by

E=q(V_2-V_1)\\\Rightarrow E=(19e-18e)(0-(-85.5\times 10^{-3})\\\Rightarrow E=1.6\times 10^{-19}\times 85.5\times 10^{-3}\\\Rightarrow E=1.368\times 10^{-20}\ J

The energy is 1.368\times 10^{-20}\ J

3 0
3 years ago
Other questions:
  • Calculate the flow rate of blood (of density 0.846 g/cm3 ) in an aorta with a crosssectional area of 1.36 cm2 if the flow speed
    10·1 answer
  • What is the best explanation of the importance of the Eighth Amendment?
    7·2 answers
  • Which ia the best example of potential energy
    9·2 answers
  • A cart of mass 6.0 kg moves with a speed of 3.0 m/s towards a second stationary cart with a mass of 3.0 kg. The carts move on a
    6·1 answer
  • Why is the air drag on a baseball different than it would be for a smooth ball with no stitches? How does this apply to the desi
    7·1 answer
  • what are the 3 properties of components of the universe that can be determined using electromagnetic radiation?
    13·1 answer
  • A container of gas is at a pressure of 1.3x10^5 Pa and a volume of 6 m^3. How much work is done by the gas if it expands at a co
    14·1 answer
  • Which of these is an appropriate treatment for a deep, bleeding wound?
    8·2 answers
  • How far will an automobile move if 168000 j of work is created by 2000 n of force
    13·1 answer
  • Please help will be marked most brainlist !!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!