Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d= * tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d= * tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
Answer:
The answer is A, B, C and D
Explanation:
(is that how it works?)
It's difficult to measure that because it's hard to make sure it is only a uniform layer of gas in whatever you're measuring it in
Answer:
240 kg * m/s
Explanation:
Given
mass (m) = 60 kg
velocity (v) = 4 m/s
Momentum = ?
We know that
Momentum is the product of mass and velocity so
Momentum = m * v
= 60 * 4
= 240 kg * m/s
Hope it helps :)