To calculate the inverse isolate x on one side and switch x with y on both sides
1)
y=(2x-3)/5
5y=2x-3
5y+3=2x
(5y+3)/2=x
-> f(x)=(5x+3)/2
2)
y=(x+8)/2
2y=x+8
2y-8=x
-> f(x)=2x-8
3)
y=(x+2)/7
7y=x+2
7y-2=x
-> f(x)=7x-2
4)
y=(1-2x)/x
y=(1/x)-2
y+2=1/x
x=1/(y+2)
-> f(x)=1/(x+2)
N(1/5) = (2/15)
divide both sides by (1/5)
n = (2/15)/(1/5)
to divide fractions, cross multiply, e.g. (2*5)/(15*1) = 10/15
n = 10/15 = 2/3 or 0.666666.
Answer:
Step-by-step explanation:
Let
L-----> the length of a rectangle
W---> the width of a rectangle
we know that
-----> equation A
-----> inequality B
The inequality B represent the equation that could be used to find the possible values of the width
The solution for the width of the rectangle is all real numbers greater than 20 units
Answer:
80 hours
Step-by-step explanation:
let d represent doug, let l represent laura
first, set up a system of equations representing the problem:
since doug spent 10 less than twice the hours laura did, and we know that the total amount of hours they spent together is 230:
l=2d+10
d+l=230
then solve:
*first i rearranged the equations so i can solve this system of equations using elimination method*
l-2d=10
l+d=230
*subtract*
3d=240
d=80
so, doug spent 80 hours in the lab