Answer: The speed is equivalent to <u>159.39 kilometers per hour </u>or <u>2.65 kilometers per minute.</u>
Explanation:
Given, The speed of a race car = 99 miles/ hour
To convert the speed into kilometers per hour and kilometers per minute
Since 1 mile = 1.61 kilometers
So, Speed of car = (99 ) x (1.61 )
= 159.39 kilometers per hour.
Also, 1 hour = 60 minutes
Then, Speed of car = (159.39) ÷60
= 2.6565≈2.65 kilometer per minute.
Hence, the speed is equivalent to <u>159.39 kilometers per hour </u>or <u>2.65 kilometers per minute.</u>
Stratospheric ozone is formed naturally through the interaction of UV radiation with molecular oxygen.
not sure if this is what you want but hope it helps!!!
Answer:
THE EMPIRICAL FORMULA FOR THE UNKNOWN COMPOUND IS C7H9O
Explanation:
The empirical formula for the unknown compound can be obtained by following the processes below:
1 . Write out the percentage composition of the individual elements in the compound
C = 75.68 %
H = 8.80 %
O = 15.52 %
2. Divide the percentage composition by the atomic masses of the elements
C = 75 .68 / 12 = 6.3066
H = 8.80 / 1 = 8.8000
O = 15.52 / 16 = 0.9700
3. Divide the individual results by the lowest values
C = 6.3066 / 0.9700 = 6.5016
H = 8.8000 / 0.9700 = 9.0722
O = 0.9700 / 0.9700 = 1
4. Round up the values to the whole number
C = 7
H = 9
O = 1
5 Write out the empirical formula for the compound
C7H90
In conclusion, the empirical formula for the unknown compound is therefore C7H9O
This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more: