Answer:
1, C: BB, Bb, Bb, BB
2. C: Hybrid
Explanation:
1. If u do a punnet square for BB and Bb you will get: BB, Bb, Bb, Bb
B| B|
B| BB. BB
b| Bb Bb
2. You do a punnet square for BB and bb and you'll get: Bb, Bb, Bb, Bb, which means all the children are hybrids of Dominant alleles ans recessive alleles
<u>B </u> <u>B</u>
b| Bb Bb
b| Bb Bb
To find the answer you need to use the formula that will help you to find the density. Density = mass/volume
d = 43.2g/96.5mL = 0.45g/mL
Answer:
(a) 
(b)


(c) 
Explanation:
Hello,
(a) In this case, with the given formula we easily compute the mass of gold contained in the sovereign as shown below:

(b) Now, by knowing the density of gold and copper, 19.32 and 8.94 g/cm³ respectively, we compute each volume, by also knowing that the rest of the coin contains copper:


(c) Finally, the volume is computed by dividing the total mass over the total volume containing both gold and copper:

Best regards.
Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
When you are converting grams to moles, the operation that you will be doing is dividing by the molar mass to obtain the amount of moles of the given sample.