The answer is C. Free Energy.
Activation energy is the energy that must be exceeded before a chemical reaction can occur. Free energy best describes as energy available to do work.
Answer:
4.4 × 10^-7
3 × 10^5
Explanation:
scmack me wit dat brainliest
It would 3 because if you read it tells you the answer
Answer:
A decrease in temperature would decrease kinetic energy, therefore decreasing collisions possible.
Explanation:
A gas at a fixed volume is going to have collisions automatically. If you decrease the temperature (same thing as decreasing kinetic energy) you are cooling down the molecules in the container which gives them less energy and "relaxes" them. This decrease in energy causes them to move around much slower and causing less collisions, at a much slower rate. In a perfect world, these collisions do not slow down the molecule but we know that they do, just a very very small unmeasurable amount.
Answer:
An atom is made of up subatomic particles called protons, neutrons and electrons. The center of an atom is called the nucleus and is where the protons and neutrons are held while electrons orbit the nucleus in orbital shells. A electron has a negative charge, a proton has a positive charge, and a neutron has no charge (neutral).
The atomic number of a atom is the total amount of the atom's protons. In a neutral atom (Not an ion), the amount of electrons is the same as the protons. Therefore, the atomic number also tells the amount of electrons in the atom.
A ion is a negatively or positively charged particle due to the giving or taking of electrons with one or more atoms (Called an ionic bond). An atom that gives away electrons becomes positively charge because that atom now has more protons than neutrons. An atom that takes an electron becomes negatively charge because that atom now has more electrons than protons.
Atomic Mass is the sum of an atom proton and neutrons. To determine how many neutron an atom has, subtract the atomic mass from the atomic number. Electrons do not play a part in atomic mass as their mass is 1/1,836 of a proton's mass.
A isotope is two or more forms of the same element that contain equal amounts of protons but different amount of neutrons.